Issue 40, 2024

Comparative assessment of the performance of density functionals and dispersion correction on different properties of dicationic ionic liquids – an ab initio molecular dynamics (AIMD) study

Abstract

In this study, we investigated the effect of DFT density functionals and dispersion correction on an imidazolium-based dicationic ionic liquid (DIL) using ab initio molecular dynamics simulations. To achieve this purpose, the electronic structures, as well as the structural and dynamical properties of [C3(mim)2][NTF2]2 DIL, were obtained using the BLYP and PBE functionals, both with and without D3-correction, and the results were compared with experimental values. Radial distribution functions and structure factors revealed that applying D3-correction increases the interaction between the anion and hydrogen atoms of the rings and side chains. The simulation of the studied DIL with the BLYP-D3 functional depicted lower structural heterogeneity compared to the other functionals. Analysis of Voronoi tessellation and linkage chain conformations showed a reduction in the aggregation of the linkage alkyl chains in the presence of D3-correction, which is more pronounced in the BLYP functional than in PBE. Additionally, it was observed that the probability of forming a hydrogen-bond network depends on both the type of used density functionals and applying dispersion correction. The results of dynamical properties, such as the self-diffusion coefficients, velocity autocorrelation function, and van Hove correlation function, as well as ion pair, ion cage, and hydrogen bond dynamics, indicated that applying D3-correction in both density functionals leads to an increase in the dynamics of the studied DIL. Additionally, the ratio of self-diffusion coefficients of the anion to the cation in the BLYP functional is closer to experimental values compared to the PBE functional. Furthermore, the electronic structure, including dipole moment distribution, and also infrared (IR) and power spectra were studied. Applying D3-correction and the type of density functionals have a significant effect on the dipole moment distribution of ions. Moreover, the results of IR and power spectra demonstrated that only in the BLYP functional, by applying D3-correction, the hydrogen bonding between the anion and the hydrogen atoms of the cation is strengthened at high wavenumbers. Thus, we conclude that applying D3 correction to both the BLYP and PBE density functionals improves the accuracy in describing the various properties of the studied system. Overall, the evaluation of different structural, dynamical, and vibrational properties of [C3(mim)2][NTF2]2 DIL suggests that the BLYP-D3 density functional may be the best choice among the studied density functionals.

Graphical abstract: Comparative assessment of the performance of density functionals and dispersion correction on different properties of dicationic ionic liquids – an ab initio molecular dynamics (AIMD) study

Supplementary files

Article information

Article type
Paper
Submitted
10 Aug 2024
Accepted
22 Sep 2024
First published
24 Sep 2024

Phys. Chem. Chem. Phys., 2024,26, 26109-26128

Comparative assessment of the performance of density functionals and dispersion correction on different properties of dicationic ionic liquids – an ab initio molecular dynamics (AIMD) study

Z. Ostadsharif Memar and M. Moosavi, Phys. Chem. Chem. Phys., 2024, 26, 26109 DOI: 10.1039/D4CP03177F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements