Additive-anchored thermoresponsive nanoscale self-assembly generation in normal and reverse Tetronics®†
Abstract
Self-assembly of ethylene oxide (EO)–propylene oxide (PO)-based star-shaped block copolymers (BCPs) in the presence of different kinds of additives is investigated in an aqueous solution environment. Commercially available four-armed BCPs, namely Tetronics® (normal: T904 with EO as the terminal end block; and reverse: T90R4 with PO as the terminal end block), each with 40%EO, are used. The effect of various additives such as electrolytes (NaCl and Na2SO4), nonelectrolyte polyols (glucose and sorbitol), and ionic surfactants (viz. anionic-sodium dodecyl sulfate (SDS), cationic-dodecyltrimethylammonium bromide (DTAB) and zwitterionic dodecyldimethylammonium propane sulfonate (C12PS)) on these BCPs is examined to observe their influence on micellization behaviour. The presence of salts and polyols displayed interesting phase behaviour, i.e., the cloud point (CP) was decreased, the water structure was affected and the micelles were dehydrated by expelling water molecules, and thus they were likely to promote micelle formation/growth. In contrast, ionic surfactants in small amounts interacted with the BCPs and showed an increase in CPs thereby forming mixed micelles with increasing charges and decreasing micellar sizes, finally transforming to small surfactant-rich mixed micelles. Molecular interactions such as electrostatic and hydrogen bonding involved within the examined entities are put forth employing a computational simulation approach using the Gaussian 09 window for calculation along with the GaussView 5.0.9 programming software using the (DFT)/B3LYP method and 3-21G basis set. The hydrodynamic diameter (Dh) of the micelles is examined using dynamic light scattering (DLS), while the various micellar parameters inferring the shape/geometry are obtained using small-angle neutron scattering (SANS) by the best fitting of the structure factors. It is observed that 10 w/v% T904 remains as spherical micelles with some micellar growth under physiological conditions (37 °C), while 10 w/v% T90R4 remains as unimers and forms spherical micelles in the presence of additives at 37 °C. Furthermore, the additive-induced micellar systems are tested as developing nanovehicles for anticancer (curcumin, Cur) drug solubilization using UV-vis spectroscopy, which shows a prominent increase in absorbance with enhanced solubilization capacity. Additionally, the cytotoxic effect of Cur loaded on the BCP micelles in HeLa cells is studied through confocal microscopy by capturing fluorescence images that depict HeLa cell growth inhibition under the influence of additive-induced micellar systems.