Issue 10, 2024

Contrasting the stability, octahedral distortions, and optoelectronic properties of 3D MABX3 and 2D (BA)2(MA)B2X7 (B = Ge, Sn, Pb; X = Cl, Br, I) perovskites

Abstract

Efficient surface passivation and toxic lead (Pb) are known obstacles to the photovoltaic application of perovskite-based solar cells. A possible solution for these problems is to use thin-films of two-dimensional (2D) perovskite-based materials and the replacement of Pb with alternative divalent cations (B); however, our atomistic understanding of the differences between (3D) three-dimensional and 2D perovskite-based materials is far from satisfactory. Herein, we report a systematic theoretical investigation based on ab initio density functional theory (DFT) calculations for both 3D MABX3 and the Ruddlesden–Popper 2D (BA)2(MA)B2X7 (B = Ge, Sn, Pb, and X = Cl, Br, I) compounds to investigate the differences (contrasts) in selected physical–chemical properties, i.e., structural parameters, energetic stability, electronic, and optical properties. We found an increased cation/anion charge separation because of the presence of organic spacers, which results in stronger Coulomb interactions in the inorganic framework, and hence, it enhances the cohesive energy (stability) within the inorganic layer. The inorganic layer constitutes the optically active region that contributes to the superior performance of perovskite-based solar cells. We quantified this effect by comparing the average electronic charges at the X sites in both 2D and 3D perovskites. This comparison is then correlated with variations in BX6-octahedron volumes, resulting in a monotonic relation. Moreover, the electronic structure characterization demonstrates that Ge-based systems present weakly sensitive band gaps to dimensionality due to a compensatory effect between Jahn–Teller distortions and quantum confinement. Lead-free GeI-, SnBr-, and SnI-based perovskites have DFT band gaps closer to the optimal value used in photovoltaic applications. Finally, as expected, the 2D systems absorption coefficients show pronounced anisotropy.

Graphical abstract: Contrasting the stability, octahedral distortions, and optoelectronic properties of 3D MABX3 and 2D (BA)2(MA)B2X7 (B = Ge, Sn, Pb; X = Cl, Br, I) perovskites

Supplementary files

Article information

Article type
Paper
Submitted
08 Sep 2023
Accepted
01 Feb 2024
First published
07 Feb 2024

Phys. Chem. Chem. Phys., 2024,26, 8469-8487

Contrasting the stability, octahedral distortions, and optoelectronic properties of 3D MABX3 and 2D (BA)2(MA)B2X7 (B = Ge, Sn, Pb; X = Cl, Br, I) perovskites

J. G. Danelon, R. M. Santos, A. C. Dias, J. L. F. Da Silva and M. P. Lima, Phys. Chem. Chem. Phys., 2024, 26, 8469 DOI: 10.1039/D3CP04361D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements