Issue 17, 2024

Smart zwitterionic coatings with precise pH-responsive antibacterial functions for bone implants to combat bacterial infections

Abstract

Hydrophilic antifouling coatings based on zwitterionic polymers have been widely applied for the surface modification of bone implants to combat biofilm formation and reduce the likelihood of implant-related infections. However, their long-term effectiveness is significantly limited by the lack of effective and precise antibacterial activity. Here, a pH-responsive smart zwitterionic antibacterial coating (PSB/GS coating) was designed and robustly fabricated onto titanium-base bone implants by using a facile two-step method. First, dopamine (DA) and a poly(sulfobetaine methacrylate-co-dopamine methacrylamide) (PSBDA) copolymer were deposited on implants via mussel-inspired surface chemistry, resulting in a hydrophilic base coating with abundant catechol residues. Next, an amino-rich antibiotic, gentamicin sulfate (GS), was covalently linked to the coating through the formation of acid-sensitive Schiff base bonds between the amine groups of GS and the catechol residues present in both the zwitterionic polymer and the DA component. During the initial implantation period, the hydrophilic zwitterionic polymers demonstrated the desired anti-fouling properties that could effectively reduce protein and bacterial adhesion by over 90%. With time, the bacterial proliferation led to a decrease in the microenvironment pH value, resulting in the hydrolysis of the acid-sensitive Schiff base bonds, thereby releasing GS on demand and effectively enhancing the anti-biofilm properties of coatings. Benefiting from this synergistic antifouling and smart antibacterial activities, the PSB/GS coating exerted an excellent anti-infective activity in both in vivo preoperative and postoperative infection rat models. This proposed facile yet effective coating strategy is expected to provide a promising solution to combat bone implant-related infections.

Graphical abstract: Smart zwitterionic coatings with precise pH-responsive antibacterial functions for bone implants to combat bacterial infections

Supplementary files

Article information

Article type
Paper
Submitted
14 Jul 2024
Accepted
18 Jul 2024
First published
26 Jul 2024

Biomater. Sci., 2024,12, 4471-4482

Smart zwitterionic coatings with precise pH-responsive antibacterial functions for bone implants to combat bacterial infections

Q. Hu, Y. Du, Y. Bai, D. Xing, C. Wu, K. Li, S. Lang, X. Liu and G. Liu, Biomater. Sci., 2024, 12, 4471 DOI: 10.1039/D4BM00932K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements