Issue 7, 2025

Microgel-based modular 3D in vitro microfluidic cell culture platforms

Abstract

The combination of 3D in vitro cell culture and microfluidic technology has emerged as a powerful approach in biomedical engineering. It offers a more physiologically relevant model compared to traditional 2D cell cultures by allowing the assembly of micro-sized cellular structures, known as microgels. These microgels can be prepared and fabricated to mimic the in vivo characteristics of an ECM. We report here an economical and feasible microfluidic 3D in vitro culture platform that offers real-time monitoring of cellular proliferation by encapsulating pH-sensing carbon dots (CDs) with cells in the microgels. These CDs were shown to effectively evaluate proliferation within cell-encapsulated microgels in comparison with the traditional Alamar blue assay. The biggest advantage of this platform is its ability to co-culture different cell types, achieved by encapsulating the cells within individual microgels, spatially separating them while maintaining close proximity. In this modular system, each microgel acts as a unit of a specific cell type, allowing easy retrieval of cells and control over cell densities. We established the efficacy of this concept by co-culturing Huh-7 and NIH-3T3 cells within different microgel combinations, under both static and dynamic flow conditions. The heterotypic interactions were explored by assessing the functionality using albumin assay and CYP3A4 gene expression studies, along with performing drug toxicity assays. The functionality studies confirmed results from existing literature studies by showing an improved hepatic function in the presence of NIH-3T3, even in the dynamic state. This platform can be expanded to include multiple cell types, creating a complex tissue-like effect without requiring spatial patterning techniques.

Graphical abstract: Microgel-based modular 3D in vitro microfluidic cell culture platforms

Supplementary files

Article information

Article type
Paper
Submitted
05 Jul 2024
Accepted
29 Nov 2024
First published
06 Dec 2024

Biomater. Sci., 2025,13, 1697-1708

Microgel-based modular 3D in vitro microfluidic cell culture platforms

M. Kaur, M. Dutta, S. Betal and N. Singh, Biomater. Sci., 2025, 13, 1697 DOI: 10.1039/D4BM00891J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements