A highly selective coumarin-based chemosensor for dual sensing of Cu2+ and Zn2+ ions with logic gate integration and live cell imaging†
Abstract
In this paper, a coumarin-based Schiff base chemosensor has been synthesized and developed to detect Cu2+ and Zn2+ ions in nanomolar concentrations. The probe selectively distinguishes Cu2+ and Zn2+ from among several metal ions in DMF : H2O (7 : 3, v/v, pH 7.4) HEPES buffer. The structure of the probe and its sensing behavior were investigated by FT-IR, UV-vis, fluorescence, HRMS, and NMR analyses, along with X-ray crystallography and computational studies. CIH detects Zn2+ and Cu2+ using different strategies: CHEF-induced fluorescence enhancement and paramagnetic fluorescence quenching, respectively. Job's plots show a 1 : 1 binding interaction between CIH and Cu2+ or Zn2+ ions. The binding constant values for Cu2+ (1.237 × 105 M−1) and Zn2+ (1.24 × 104 M−1) suggest a better ability for Cu2+ to interact with CIH than Zn2+. An extremely high sensitivity of the probe was highlighted by its very low detection limits (LOD) of 5.36 nM for Cu2+ and 3.49 nM for Zn2+. The regeneration of the probe with the addition of EDTA in its complexes allows the formation of molecular logic gates. CIH has been successfully employed in mitotracking and intracellular detection of Zn2+ and Cu2+ in SiHa cells.