Dual modulation of blue-fluorescent carbon dots for simultaneous detection of topotecan and pantoprazole†
Abstract
This study introduces a novel approach for the simultaneous determination of topotecan (TOP) and pantoprazole (PNT), two drugs whose interaction is critical in clinical applications. The significance of this study originates from the need to understand the pharmacokinetic changes of TOP after PNT administration, which can inform necessary dose adjustments of TOP. To achieve this, nitrogen blue emissive carbon dots (B@NCDs) were produced and employed due to their unique fluorescent properties. When TOP is added to B@NCDs, it exhibits strong native fluorescence at 545 nm without influencing the B@NCDs' fluorescence at 447 nm. Conversely, PNT causes quenching of B@NCDs fluorescence, a property that enables the distinct detection of both drugs. The B@NCDs were fully characterized using different techniques, including ultraviolet-visible spectrophotometry, fluorescence analysis, X-ray diffraction (XRD), transmission electron microscopy (TEM), and FTIR spectroscopy. The proposed method demonstrated excellent linearity, selectivity, and sensitivity, with low detection limits (LOD, S/N = 3); 0.0016 μg mL−1 for TOP and 0.36 μg mL−1 for PNT. Applied to spiked rabbit plasma samples, this method offers a new approach for evaluating the pharmacokinetic interaction between TOP and PNT. It enables the determination of all pharmacokinetic parameters of TOP before and after coadministration with PNT, providing essential insights into whether dose adjustments are necessary. This research not only contributes to the field of drug monitoring and interaction studies but also exemplifies the potential of B@NCDs in complex biological matrices, paving the way for further pharmacological and therapeutic applications.