Issue 5, 2023

High quantum yield carbon dots and nitrogen-doped carbon dots as fluorescent probes for spectroscopic dopamine detection in human serum

Abstract

Recent advances in fluorescent carbon dots have shown great potential for the sensing of biological molecules. In this study, one-step hydrothermally synthesised carbon dots (CD) and nitrogen doped carbon dots (NCD) with high quantum yields of 54.29% and 89.82%, respectively, were investigated and demonstrated to be a reliable, cost-effective, and naked-eye fluorescent probe for the detection of dopamine, a neurotransmitter, in human serum fluids. The current study is well supported by a comprehensive synthesis approach and has been described utilizing a variety of microscopic and spectroscopic techniques. The discovered approach is time and pH dependent, and it provides a robust platform for specifically detecting aberrant dopamine levels using a fluorescence quenching mechanism. Dopamine detection limits for CD were calculated to be 5.54 μM for CD and 5.12 μM for NCD, respectively. The fluorescence quenching shows a linear continuous trend with a range within 3.3–500 μM and 3.3–400 μM of dopamine concentration for CD and NCD respectively. To further verify the sensitivity of CD and NCD as fluorescent probes, interference studies in the presence of different biological components were also studied and validated. This work shows that carbon-based nanomaterials and their doped nanostructures, due to their high fluorescence, have significant potential as fluorescent probes in neurological disease diagnosis as they display high selectivity, sensitivity and fast responses in the real time spectroscopic detection of dopamine in human fluid samples.

Graphical abstract: High quantum yield carbon dots and nitrogen-doped carbon dots as fluorescent probes for spectroscopic dopamine detection in human serum

Supplementary files

Article information

Article type
Paper
Submitted
13 Oct 2022
Accepted
17 Dec 2022
First published
20 Dec 2022

J. Mater. Chem. B, 2023,11, 1029-1043

High quantum yield carbon dots and nitrogen-doped carbon dots as fluorescent probes for spectroscopic dopamine detection in human serum

A. Tiwari, S. Walia, S. Sharma, S. Chauhan, M. Kumar, T. Gadly and J. K. Randhawa, J. Mater. Chem. B, 2023, 11, 1029 DOI: 10.1039/D2TB02188A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements