Issue 10, 2023

Miscibility driven morphology modulation in ternary solar cells

Abstract

Organic solar cells (OSCs) are viable power sources for photovoltaic applications. In this work, a non-fullerene acceptor, PDI-EH, was designed to form a nearly orthogonal structure to suppress its aggregation, and integrated into ternary OSCs. In addition to enhanced photon absorption and matched charge cascade, a PDI-EH acceptor modulated the morphology, which is crucial to affect device efficiency. Detailed analysis revealed that PDI-EH can fine-tune the miscibility of the host donor and acceptor (D/A) materials to form an optimally intermixed phase with short-range molecular order. Photo-induced force microscopy (PiFM) for selective PiFM imaging of D/A materials provided strong evidence that D/A materials formed well-mixed films after PDI-EH incorporation. Additionally, nanoscale spatial mapping of charge carrier dynamics was realized for the first time in a ternary film using a novel transient photo-response atomic force microscopy (TP-AFM) technique. The resulting TP-AFM data revealed a reduced charge transport time, increased charge recombination lifetime and extended charge diffusion length. These improvements brought about by PDI-EH benefit the photovoltaic performance of ternary OSCs under both 1-sun and indoor illuminations. Our work offers insights into morphology modulation and the resulting local charge carrier dynamic, thereby facilitating the development of OSCs in practical applications.

Graphical abstract: Miscibility driven morphology modulation in ternary solar cells

Supplementary files

Article information

Article type
Paper
Submitted
21 Dec 2022
Accepted
25 Jan 2023
First published
08 Feb 2023

J. Mater. Chem. A, 2023,11, 5037-5047

Miscibility driven morphology modulation in ternary solar cells

T. Yu, F. Tintori, Y. Zhang, W. He, E. Cieplechowicz, R. S. Bobba, P. I. Kaswekar, M. Jafari, Y. Che, Y. Wang, M. Siaj, R. Izquierdo, D. F. Perepichka, Q. Qiao, G. C. Welch and D. Ma, J. Mater. Chem. A, 2023, 11, 5037 DOI: 10.1039/D2TA09928D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements