Issue 16, 2023

Efficient multigram procedure for the synthesis of large hydrazone-linked molecular cages

Abstract

Covalently linked molecular cages can provide significant advantages (including, but not limited to enhanced thermal and chemical stability) over metal-linked coordination cages. Yet, while large coordination cages can now be created routinely, it is still challenging to create chemically robust, covalently linked molecular cages with large internal cavities. This fundamental challenge has made it difficult, for example, to introduce endohedral functional groups into covalent cages to enhance their practical utility (e.g., for selective guest recognition or catalysis), since the cavities would have simply been filled up with such endohedral functional groups in most cases. Here we now report the synthesis of some of the largest known covalently linked molecular tetrahedra. Our new covalent cages all contain 12 peripheral functional groups, which keep them soluble. They are formed from a common vertex, which aligns the hydrazide functions required for the hydrazone linkages with atropisomerism. While we previously reported this vertex as a building block for the smallest member of our hydrazone-linked tetrahedra, our original synthesis was not feasible to be carried out on the larger scales required to successfully access the larger tetrahedra. To overcome this synthetic challenge, we now present an improved synthesis of our vertex, which only requires a single chromatographic step (compared to 3 chromatographic purification steps, which were needed for the initial synthesis). Our new synthetic route enabled us to create a whole family of molecular cages with increasing size (all linked with hydrolytically stable hydrazone bonds), with our largest covalent cage featuring p-quarterphenyl linkers and the ability to encapsulate a hypothetical sphere of approximately 3 nm in diameter. These results now open up the possibility to introduce functional groups required for selective recognition and catalysis into chemically robust covalent cages (without blocking the cavities of the covalent cages).

Graphical abstract: Efficient multigram procedure for the synthesis of large hydrazone-linked molecular cages

Supplementary files

Article information

Article type
Research Article
Submitted
03 Apr 2023
Accepted
05 Jun 2023
First published
29 Jun 2023

Org. Chem. Front., 2023,10, 3965-3974

Efficient multigram procedure for the synthesis of large hydrazone-linked molecular cages

O. Vestrheim, M. E. Schenkelberg, Q. Dai and S. T. Schneebeli, Org. Chem. Front., 2023, 10, 3965 DOI: 10.1039/D3QO00480E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements