Issue 40, 2023

Ultrafast carrier dynamics in vanadium-doped MoS2 alloys

Abstract

Substitutional doping is a most promising approach to manipulate the electronic and optical properties of two-dimensional (2D) transition metal dichalcogenides (TMDCs). In addition to inducing magnetism, vanadium (V) doping can lead to semiconductor–metal transition in TMDCs. However, the dynamics of charge carriers that governs the optoelectronic properties of doped TMDCs has been rarely revealed. In this work, we have investigated the dynamics of photocarriers in pristine and V-doped monolayer (ML) MoS2. Comparison of the transient absorption (TA) spectra of ML MoS2 with lightly (≤1%) and heavily (3.62%) V-doped MoS2 infers the induction of additional energy states in the doped materials giving rise to new low energy bleach features in the TA spectra. The quasiparticle band structure of MoS2 is found to disappear at sufficiently high V doping due to the presence of impurity bands. An attempt has also been made to study the manipulation of the carrier lifetime with V doping in MoS2. Our TA kinetic measurements suggest that the decay kinetics of the carriers becomes slower with increasing doping percentage and at a higher doping level the carriers survive for a much longer time compared to pristine MoS2. Furthermore, we have identified a new electronic transition (NET) in heavily V-doped MoS2 at high pump fluences.

Graphical abstract: Ultrafast carrier dynamics in vanadium-doped MoS2 alloys

Supplementary files

Article information

Article type
Paper
Submitted
10 Jul 2023
Accepted
07 Sep 2023
First published
07 Sep 2023

Nanoscale, 2023,15, 16344-16353

Ultrafast carrier dynamics in vanadium-doped MoS2 alloys

B. Upadhyay, R. Sharma, D. Maity, T. N. Narayan and S. K. Pal, Nanoscale, 2023, 15, 16344 DOI: 10.1039/D3NR03337F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements