Issue 18, 2023

Thermal conductivity of ethylene glycol and propylene glycol nanofluids with boron nitride nano-barbs

Abstract

This study investigates the potential of composite allotrope boron nitride nanobarbs (BNNBs) as nanoparticles for enhancing the thermal conductivity of nanofluids based on mixtures of ethylene glycol and propylene glycol with water. BNNBs are allotrope composites composed of boron nitride nanotube cores with walls decorated with attached hexagonal boron nitride crystals, creating a jagged morphology that facilitates the formation of a connected network and contributes to the enhancement of thermal conductivity in nanofluids. BNNBs exhibit high thermal conductivity due to efficient phonon transfer and they are electrical insulators owing to their wide bandgap. The effect of BNNB concentration in carrier fluids on nanofluid thermal conductivity was investigated by introducing BNNBs into ethylene glycol-water and propylene glycol-water mixtures at 0–10 wt%. The results showed that BNNBs enhanced thermal conductivity of carrier fluids up to 45%, and the enhancement was proportional to the concentration of BNNBs in the carrier fluid. The study also investigated the dispersion stability of BNNBs in different solvents using Hansen Solubility Parameters, revealing that propylene glycol mixtures demonstrated better long-term stability compared to ethylene glycol mixtures. The findings suggest that BNNBs have great potential for use as thermally conductive nanoparticles in nanofluids for various heat transfer applications. Future research should focus on enhancing the dispersion stability of BNNB nanofluids and exploring the influence of BNNB morphology on the thermal conductivity and other thermophysical properties of nanofluids.

Graphical abstract: Thermal conductivity of ethylene glycol and propylene glycol nanofluids with boron nitride nano-barbs

Supplementary files

Article information

Article type
Paper
Submitted
11 Nov 2022
Accepted
13 Apr 2023
First published
17 Apr 2023

Nanoscale, 2023,15, 8406-8415

Author version available

Thermal conductivity of ethylene glycol and propylene glycol nanofluids with boron nitride nano-barbs

A. O. Maselugbo, B. L. Sadiku and J. R. Alston, Nanoscale, 2023, 15, 8406 DOI: 10.1039/D2NR06332H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements