3D multicellular micropatterning biomaterials for hair regeneration and vascularization†
Abstract
Hair loss caused by the abnormal functions of hair follicles in skin can seriously impact the quality of an individual's life. The development of sophisticated skin tissue-engineered constructs is required to enable the function recovery of hair follicles. However, effective hair regrowth in skin substitutes still remains a great challenge. In this study, a 3D multicellular micropattern was successfully fabricated by arranging the hair follicle-related cells orderly distributed in the interval of vascular-cell networks via bioprinting technology. By combining the stable biomimetic micropattern structure and the bio-inducing substrate incorporated with magnesium silicate (MS) nanomaterials, the 3D multicellular micropattern possessed significant follicular potential and angiogenic capacity in vitro. Furthermore, the 3D multicellular micropattern with MS incorporation contributed to efficient hair regrowth during skin tissue regeneration in both immunodeficient mice and androgenetic alopecia (AGA) mice models. Thus, this study proposes a novel 3D micropatterned multicellular system assembling a biomimetic micro-structure and modulating the cell–cell interaction for hair regeneration during skin reconstruction.