Issue 23, 2023

Squeezed state in the hydrodynamic focusing regime for Escherichia coli bacteria detection

Abstract

Flow cytometry is an essential technique in single particle analysis and cell sorting for further downstream diagnosis, exhibiting high-throughput and multiplexing capabilities for many biological and biomedical applications. Although many hydrodynamic focusing-based microfluidic cytometers have been demonstrated with reduced size and cost to adapt to point-of-care settings, the operating conditions are not characterized systematically. This study presents the flow transition process in the hydrodynamic focusing mechanism when the flow rate or the Reynolds number increases. The characteristics of flow fields and mass transport were studied under various operating conditions, including flow rates and microchannel heights. A transition from the squeezed focusing state to the over-squeezed anti-focusing state in the hydrodynamic focusing regime was observed when the Reynolds number increased above 30. Parametric studies illustrated that the focusing width increased with the Reynolds number but decreased with the microchannel height in the over-squeezed state. The microfluidic cytometric analyses using microbeads and E. coli show that the recovery rate was maintained by limiting the Reynolds number to 30. The detailed analysis of the flow transition will provide new insight into microfluidic cytometric analyses with a broad range of applications in food safety, water monitoring and healthcare sectors.

Graphical abstract: Squeezed state in the hydrodynamic focusing regime for Escherichia coli bacteria detection

Supplementary files

Article information

Article type
Paper
Submitted
18 May 2023
Accepted
23 Oct 2023
First published
01 Nov 2023

Lab Chip, 2023,23, 5039-5046

Squeezed state in the hydrodynamic focusing regime for Escherichia coli bacteria detection

W. Zhao, X. Shang, B. Zhang, D. Yuan, B. T. T. Nguyen, W. Wu, J. B. Zhang, N. Peng, A. Q. Liu, F. Duan and L. K. Chin, Lab Chip, 2023, 23, 5039 DOI: 10.1039/D3LC00434A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements