Issue 4, 2023

How alkali cations affect salt precipitation and CO2 electrolysis performance in membrane electrode assembly electrolyzers

Abstract

Electrocatalytic CO2 reduction in membrane electrode assembly (MEA) electrolyzers is a promising approach to producing carbon-neutral chemicals and fuels at commercially relevant rates. However, short-duration stability owing to cathode flooding and salt precipitation in MEAs is a significant challenge for commercializing this technology. Using operando wide-angle X-ray scattering (WAXS), we demonstrate how the formation of salt precipitates occurs and varies with alkali cations. We also correlate this formation of precipitates with CO2 reduction reaction (CO2RR) and hydrogen evolution reaction (HER) selectivity by measuring the anode and cathode products using an in-line gas chromatograph. We found that low-solubility salts can quickly precipitate over the catalyst layer and limit the CO2 from accessing the catalyst thereby enhancing the HER. Although salts with marginal solubility demonstrate an oscillatory trend between salt precipitation and dissolution, the use of highly soluble Cs salts prevents salt precipitation and mitigates flooding of the gas diffusion layer. In addition, diluting cation concentration in the anolyte significantly decreases salt precipitation as well as improves the CO2RR product selectivity. This work suggests that the key to circumventing salt precipitation is to use highly soluble alkali cation salts as the anolyte (e.g. CsHCO3) along with an optimal salt concentration between 0.01 and 0.1 M.

Graphical abstract: How alkali cations affect salt precipitation and CO2 electrolysis performance in membrane electrode assembly electrolyzers

Supplementary files

Article information

Article type
Paper
Submitted
18 Nov 2022
Accepted
22 Feb 2023
First published
22 Feb 2023

Energy Environ. Sci., 2023,16, 1631-1643

How alkali cations affect salt precipitation and CO2 electrolysis performance in membrane electrode assembly electrolyzers

S. Garg, Q. Xu, A. B. Moss, M. Mirolo, W. Deng, I. Chorkendorff, J. Drnec and B. Seger, Energy Environ. Sci., 2023, 16, 1631 DOI: 10.1039/D2EE03725D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements