Positioning hydrogen reaction sites by constructing CdS/CoNiMoS4 heterojunctions for efficient photocatalytic hydrogen evolution†
Abstract
The high gravimetric energy density of hydrogen makes it an ideal chemical fuel to address the issues of fossil fuel depletion and environmental pollution. Even though transition metal sulfides (TMSs) have been extensively investigated as substitutes for noble metals, their effectiveness is still doubtful for practical applications. Herein, we introduce a facile and general strategy to fabricate heterojunctions with CdS nanorods and a multimetallic transition metal sulfide (CoNiMoS4) for enhanced photocatalytic activity. The CdS/CoNiMoS4 heterojunction will serve as a dual-function photocatalyst with enhanced visible light absorption capability offered by CdS and high charge transfer efficiency provided by CoNiMoS4 nanostructures. Moreover, CdS/CoNiMoS4 nanostructures exhibit the best photocatalytic performance to generate H2 with an amount of 31.9 mmol g−1 h−1, with a distinguished stability for over 25 h. This synthetic approach may offer a new strategy to create diverse heterojunctions with Earth-abundant multimetallic components, which may broaden their scope of application in catalysis.