Issue 20, 2023

Interpreting inorganic compositional depth profiles to understand the rate-limiting step in vapor phase infiltration processes

Abstract

Vapor phase infiltration (VPI) is a post-polymerization modification technique that infuses inorganics into polymers to create organic–inorganic hybrid materials with new properties. Much is yet to be understood about the chemical kinetics underlying the VPI process. The aim of this study is to create a greater understanding of the process kinetics that govern the infiltration of trimethyl aluminum (TMA) and TiCl4 into PMMA to form inorganic-PMMA hybrid materials. To gain insight, this paper initially examines the predicted results for the spatiotemporal concentrations of inorganics computed from a recently posited reaction–diffusion model for VPI. This model provides insight on how the Damköhler number (reaction versus diffusion rates) and non-Fickian diffusional processes (hindering) that result from the material transforming from a polymer to a hybrid can affect the evolution of inorganic concentration depth profiles with time. Subsequently, experimental XPS depth profiles are collected for TMA and TiCl4 infiltrated PMMA films at 90 °C and 135 °C. The functional behavior of these depth profiles at varying infiltration times are qualitatively compared to various computed predictions and conclusions are drawn about the mechanisms of each of these processes. TMA infiltration into PMMA appears to transition from a diffusion-limited process at low temperatures (90 °C) to a reaction-limited process at high temperatures (135 °C) for the film thicknesses investigated here (200 nm). While TMA appears to fully infiltrate these 200 nm PMMA films within a few hours, TiCl4 infiltration into PMMA is considerably slower, with full saturation not occurring even after 2 days of precursor exposure. Infiltration at 90 °C is so slow that no clear conclusions about mechanism can be drawn; however, at 135 °C, the TiCl4 infiltration into PMMA is clearly a reaction-limited process, with TiCl4 permeating the entire thickness (at low concentrations) within only a few minutes, but inorganic loading continuously increasing in a uniform manner over a course of 2 days. Near-surface deviations from the uniform-loading expected for a reaction-limited process also suggest that diffusional hindering is high for TiCl4 infiltration into PMMA. These results demonstrate a new, ex situ analysis approach for investigating the rate-limiting process mechanisms for vapor phase infiltration.

Graphical abstract: Interpreting inorganic compositional depth profiles to understand the rate-limiting step in vapor phase infiltration processes

Supplementary files

Article information

Article type
Paper
Submitted
03 Apr 2023
Accepted
03 May 2023
First published
04 May 2023

Phys. Chem. Chem. Phys., 2023,25, 14064-14073

Author version available

Interpreting inorganic compositional depth profiles to understand the rate-limiting step in vapor phase infiltration processes

S. A. Balogun, Y. Ren, R. P. Lively and M. D. Losego, Phys. Chem. Chem. Phys., 2023, 25, 14064 DOI: 10.1039/D3CP01517C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements