Issue 22, 2023

The fundamental relation between electrohelicity and molecular optical activity

Abstract

Electrohelicity arises in molecules such as allene and spiropentadiene when their symmetry is reduced and helical frontier molecular orbitals (MOs) appear. Such molecules are optically active and electrohelicity has been suggested as a possible design principle for increasing the chiroptical response. Here we examine the fundamental link between electrohelicity and optical activity by studying the origin of the electric and magnetic transition dipole moments of the π–π* transitions. We show that the helical character of the MOs drives the optical activity in allene, and we use this knowledge to design allenic molecules with increased chiroptical response. We further examine longer carbyne-like molecules. While the MO helicity also contributes to the optical activity in non-planar butatriene, the simplest cumulene, we show there is no relation between the chiroptical response and the helical π-MOs of tolane, a simple polyyne. Finally, we demonstrate that the optical activity of spiropentadiene is inherently linked to mixing of its two π-systems rather than the helical shape of its occupied π-MOs. We thus find that the fundamental connection between electrohelicity and optical activity is very molecule dependent. Although electrohelicity is not the underlying principle, we show that the chiroptical response can be enhanced through insight into the helical nature of electronic transitions.

Graphical abstract: The fundamental relation between electrohelicity and molecular optical activity

Supplementary files

Article information

Article type
Paper
Submitted
24 Mar 2023
Accepted
22 May 2023
First published
23 May 2023

Phys. Chem. Chem. Phys., 2023,25, 15200-15208

The fundamental relation between electrohelicity and molecular optical activity

M. H. Garner and C. Corminboeuf, Phys. Chem. Chem. Phys., 2023, 25, 15200 DOI: 10.1039/D3CP01343J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements