Issue 45, 2023

Organic-moiety-engineering on copper surface for carbon dioxide reduction

Abstract

Electrochemical conversion of carbon dioxide (CO2) into value-added products powered by sustainable electricity is considered as one of the most promising strategies for carbon neutrality. Among the products, hydrocarbons, especially ethylene and ethanol are the most desired species due to their wide industrial applications. Copper-based catalysts are currently the very limited option available for catalyzing the reduction of CO2 to multi-carbon products. How to enhance the selectivity and current density is the focus in both academia and industry. In recent years, some organic molecules, oligomers and polymers with well-defined structures have been applied and demonstrated to be effective on enhancing electrocatalytic activity of copper catalysts. However, the molecular/copper interaction and CO2 molecules’ behavior at the hetero-interface remain unclear. In this review, we classify the different organic materials which have been applied in the field of electrochemical CO2 reduction. We focus on the regulation of local microenvironment on the copper surface by organic compounds, including surface hydrophobicity, local electric field, local pH, and coverage of intermediates etc. The relationship between local microenvironment and catalytic activity is specifically discussed. This review could provide guidance for the development of more organic/inorganic hybrid catalysts for further promoting CO2 reduction reaction.

Graphical abstract: Organic-moiety-engineering on copper surface for carbon dioxide reduction

Article information

Article type
Feature Article
Submitted
02 Mar 2023
Accepted
02 May 2023
First published
02 May 2023

Chem. Commun., 2023,59, 6827-6836

Organic-moiety-engineering on copper surface for carbon dioxide reduction

C. Lu, Y. Su, J. Zhu, J. Sun and X. Zhuang, Chem. Commun., 2023, 59, 6827 DOI: 10.1039/D3CC01049J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements