Development of emamectin benzoate-loaded liposome nano-vesicles with thermo-responsive behavior for intelligent pest control
Abstract
Pesticides play an important role in agricultural disease and pest control. However, the low utilization efficiency and environmentally unfriendly disadvantages of conventional pesticide formulations cause substantial environmental and ecological damage. Constructing intelligent controlled-release pesticide systems via nanotechnology is a feasible way to overcome these defects. In this research, an emamectin benzoate-loaded liposome nano-vesicle (EB-Lip-NV) with a multicompartment structure and thermo-responsive characteristics was developed to accurately control nocturnal pests and improve insecticidal activity. EB-Lip-NV is an unusual low-temperature rapid-release system based on phase transitions of the liposome membrane. Compared with the conventional water-soluble granule (SG), the EB-Lip-NV exhibited higher control activity on Spodoptera exigua. More importantly, the control efficacy of Spodoptera exigua at 20 °C was around 1.4 times that at 40 °C because of low temperature-induced rapid release. This controlled-release behavior of EB-Lip-NV in response to temperature change could effectively control the population of nocturnal pests. In addition, the toxicity of the EB-Lip-NV towards zebrafish was lower than that of SG by above 50%. This study provides a new strategy for constructing intelligent controlled-release pesticide systems with improving utilization rate and reducing harm to the environment and non-target organisms.