Issue 20, 2022

A microstructural investigation of an industrial attractive gel at pressure and temperature

Abstract

Oil-continuous drilling fluids used in the oil and gas industry are formulated to be pseudoplastic with a relatively weak yield stress. These fluids are required to maintain their properties over wide temperature and pressure ranges yet there are few methods that can sensitively study the inherent structure and mechanical properties in the fluids under such conditions. Here we study a model oil-continuous drilling fluid formulation as a function of both temperature (up to 153 °C) and pressure (up to 1330 bar) with Diffusive Wave Spectroscopy (DWS). The system comprises a colloidal gel network of clay particles and trapped emulsion droplets. As a function of temperature the system undergoes local structural changes reflected in the DWS dynamics which are also consistent with macroscopic rheological measurements. On cycling to high pressure the system exhibits similar structural and dynamic changes with a strong hysteresis. Although multiple scattering in multicomponent non-ergodic samples does not directly yield self diffusion probe dynamics, the use of microrheology analysis here appears to be in good agreement with direct rheological measurements of the sample linear viscoelasticity at ambient pressure. Thus DWS microrheology succesfully probes irreversible changes in the structure and the mechanical response of the drilling fluid formulation under a high pressure cycle.

Graphical abstract: A microstructural investigation of an industrial attractive gel at pressure and temperature

Supplementary files

Article information

Article type
Paper
Submitted
21 Feb 2022
Accepted
29 Apr 2022
First published
12 May 2022

Soft Matter, 2022,18, 3941-3954

A microstructural investigation of an industrial attractive gel at pressure and temperature

A. Clarke, E. Jamie, N. A. Burger, B. Loppinet and G. Petekidis, Soft Matter, 2022, 18, 3941 DOI: 10.1039/D2SM00248E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements