Open Access Article
Luca Häuser
a,
Johannes Erben
b,
Guillaume Pillot
a,
Sven Kerzenmacher
*a,
Wolfgang Dreher
c and
Ekkehard Küstermann
c
aCenter for Environmental Research and Sustainable Technology (UFT), University of Bremen, 28359 Bremen, Germany. E-mail: kerzenmacher@uni-bremen.de
bElectrochaea GmbH, 82152 Planegg, Germany
cIn-vivo-MR Group, Faculty 02 (Biology/Chemistry), University of Bremen, 28359 Bremen, Germany
First published on 15th June 2022
Identifying the limiting processes of electroactive biofilms is key to improve the performance of bioelectrochemical systems (BES). For modelling and developing BES, spatial information of transport phenomena and biofilm distribution are required and can be determined by Magnetic Resonance Imaging (MRI) in vivo, in situ and in operando even inside opaque porous electrodes. A custom bioelectrochemical cell was designed that allows MRI measurements with a spatial resolution of 50 μm inside a 500 μm thick porous carbon electrode. The MRI data showed that only a fraction of the electrode pore space is colonized by the Shewanella oneidensis MR-1 biofilm. The maximum biofilm density was observed inside the porous electrode close to the electrode-medium interface. Inside the biofilm, mass transport by diffusion is lowered down to 45% compared to the bulk growth medium. The presented data and the methods can be used for detailed models of bioelectrochemical systems and for the design of improved electrode structures.
The transport of substrate and reaction products i.e. fluxes into and out of the biofilm are linked to the current density according to Faraday's law.14,20 The fluxes are mainly governed by diffusion which is driven by gradients and coupled with the diffusion coefficient D according to Fick's laws. The gradients result in local chemical microenvironments e.g. substrate concentration and pH that effect metabolic activity and therefore current production.21–23 However, the chemical microenvironment in biofilms has only been measured directly in biofilms grown on flat electrodes mostly using microelectrodes.24–26 The inside of most porous electrodes cannot be characterized because the material is too fragile (for the use of microelectrodes) or opaque (for characterization with optical tomographic methods, see below). Compared to porous electrodes8,10 which enable more space for the biofilm and enhanced mass transport, flat electrodes support relatively low current densities and low productivity, but are accessible for such measurements and simple to model.
Such computational biofilm models that include mass transport allow a deeper understanding of the processes occurring in biofilms.27–29 Existing models of biofilms grown on flat electrodes either rely on parametrization of the biofilm structure, diffusion coefficients and substrate conversion kinetics10,20,30–34 or make use of spatial information (abstracted profiles of diffusion coefficients) acquired by tomographic imaging techniques.13,35
Modelling of complex biofilm structures and its validation requires in-depth information that can be acquired using various tomographic measuring techniques such as Confocal Laser Scanning Microscopy (CLSM),36–41 Optical Coherence Tomography (OCT)42–47 and Magnetic Resonance Imaging (MRI).48 While optical tomographic techniques allow fast and high resolution imaging, only MRI enables the characterization of optically opaque porous electrode/biofilm structures.45,49–51
1H-MRI visualizes predominantly water as it is the most abundant molecule with 1H-nuclei. The contrast in MR images depends on structure specific properties of water molecules such as relaxation (e.g. T1, T2,
), concentration and diffusion. While water signals are detected from the intra- or extracellular space, the electrode itself does not contribute to the 1H-signal measured and appears in the data as a region with reduced signal intensity. Besides imaging of biofilm structures, MRI enables the monitoring of chemical species, metabolic processes and transport phenomena non-destructively, in situ and in vivo.52–59 Thus, it allows the measurement of a variety of quantities relevant to characterization and modelling of electroactive biofilms on porous electrodes. For instance, the MRI measurands – such as relaxation times T1, T2 and apparent diffusion coefficients D* – are indicators for the biofilm density as they differ significantly from the bulk water due to the different physical environments.53,60 Because the biofilm density X cannot be quantified directly by MRI, empirical correlations of MRI measurands and X are required.
Recently, an ex vivo study showed that the biofilm volume (extracted from colonized carbon beads) specified by T1 correlates with total nitrogen content of the biofilm and the total produced electrical charge.61 Previously Renslow et al. used apparent diffusion coefficients D* and an empiric correlation17 to quantify the local biofilm density X.35 However, the biofilm quantification was not validated. The depth profiles of D* and X derived from these MRI data were subsequently used to simulate substrate flux, current production and substrate concentration profiles within a G. sulfurreducens biofilm grown on a flat electrode.
So far, no study has been published that exploits the benefits of MRI – the in vivo imaging of complex EABs inside porous electrodes that are relevant for applications. The present study demonstrates the feasibility of MRI as an in vivo, in situ, in operando and non-invasive method to characterize electroactive biofilms inside porous electrodes. High performance carbon nanofiber electrodes are used which enable high biofilm and current density with S. oneidensis.62–64 The biofilm density and its distribution are analyzed with qualitative indicators, the transversal relaxation time T2 and the (effective) apparent diffusion coefficient D* of water. The acquired data, especially the D* as transport coefficient may, support the 3D modelling of complex biofilms in porous structures.
The reactor, the reservoir and lines were filled with 300 ml medium and sterilized by autoclaving at 121 °C for 20 min. Two variants of the medium were used: a standard medium M and an improved medium M* with high phosphate-buffered saline (PBS) content and additional riboflavin (see Table 1 for details). All chemicals were purchased from commercial suppliers, in particular from Sigma-Aldrich (Taufkirchen, Germany), Carl Roth (Karlsruhe, Germany) and Merck (Darmstadt, Germany). After autoclaving the reference electrode was sterilised with 10% hydrogen peroxide solution and then mounted in the reactor under sterile conditions. Before inoculation with Shewanella oneidensis MR-1, the contrast agent Gd-DTPA (Magnevist, Bayer AG, Leverkusen, Germany) was added via a sterile filter and septum. Magnevist, which is assumed not to enter the bacteria, reduces the T1 of the medium and total measurement time considerably. By using a TR of 0.5 s the signal originating from the bacterial cytoplasmic compartment, which is expected to have a longer T1 relaxation time, will be attenuated. This attenuation favours the characterization of the bacterial microenvironment inside the porous electrode. The working electrode was polarized at a potential of 0 V vs. Ag/AgCl for at least 12 h prior to inoculation to minimize non-coulombic contributions to the measured current.
| Component | Concentration c in mmol L−1 | |
|---|---|---|
| Medium | Standard M | Improved M* |
| NaCl | 137 | 77 |
| KCl | 2.7 | 2.7 |
| NaHPO | 10 | 40 |
| KHPO4 | 1.76 | 7.04 |
| (NH4)2SO4 | 9 | 9 |
| MgSO4·7H2O | 1 | 1 |
| CaCl2 | 0.1 | 0.1 |
| Trace elements | ||
| Casein hydrolysate | 0.1 | 0.1 |
| Na-D/L lactate (50% in H2O) | 50 | 50 |
| Additional components | ||
| Riboflavin | 0 | 0.001 |
| Contrast agent Magnevist | 2 | 2 |
S. oneidensis MR-1 cells were precultivated aerobically in Lysogeny Broth (LB medium) and prepared for the use in the bioelectrochemical reactor according to Kipf et al.65 The sterilized reactor was finally inoculated through a sterile septum to get an initial optical density (OD600) of approximately 0.05.
The entire bioreactor was imaged prior to the inoculation for control purposes (abiotic status) and after the bioproduced current density reached its maximum (biotic status) using the same MR sequences and parameters. MR imaging of water was done at 300 MHz (7 T) on a horizontal small-bore MRI system (Bruker Biospec 70/20 USR, Bruker BioSpin MRI, Ettlingen, Germany) with a gradient system of 12 cm inner diameter (B-GA 12S2). For signal transmission and reception, a custom-made, inductively coupled RF-coil (linearly polarized slotted tube resonator) was used which encloses the entire reactor. After adjusting the field homogeneity and RF-power levels the reactor was imaged with two 3D spin-echo (SE) sequences, one with T2- and a second with diffusion weighting comprising the same field-of-view (FOV) of 19.20 mm × 19.20 mm × 20.0 mm (z y x direction). The FOV is mapped with a resolution of at least 384 × 32 × 33 voxels. This results in a resolution of 50 μm in the z-direction. Local T2-values were calculated from SE images obtained with a TR of 0.5 s at 8 echo times TE of 20 ms, 40 ms, 80 ms, 100 ms, 120 ms, 140 ms, 160 ms by fitting the observed signal decay to the equation S(TE) = S(0)
exp{−TE/T2}. The corresponding 3D-maps of the local self-diffusion constant D* of water were calculated from 4 images obtained with the so called b-values of 50, 350, 650, and 950 s mm−2 fitted to the equation S(b) = S(0)
exp{−bD*}, where the b-value describes the diffusion weighting, which can be tuned by strength and duration of the two diffusion sensitizing magnetic field gradients. Prior to data fitting the recorded time domain data was Fourier transformed, masked, filtered, analyzed and graphically represented using custom ImageJ, Matlab and LaTeX scripts. Detailed information on the processing steps is available in the supplementary information (Fig. S1† in ESI).
Relative slice diffusion coefficients
are (in z-slices/parallel to electrode) averaged slice diffusion coefficients
normalized to their respective value in the medium
.
and relative slice relaxation times
calculated analogously are unitless and range from 0 to 1.
The depth dependent biofilm density
was calculated assuming the relative slice diffusion coefficients
as diffusion coefficient using the empirical correlation from Fan et al.:17
![]() | (1) |
The biofilm density
inside the electrode was normalized using the biofilm density
of the abiotic uncolonized electrode.
After the MRI experiments the electrode was removed from the reactor, the biofilm was fixated and characterized with fluorescence microscopy and qPCR as control for the biofilm density and its distribution (details in ESI†).66
The biofilms grown on the electrodes were characterized once the current production had become stable (t > 120 h, solid line in Fig. 2a and b). The dotted line represents the current density of the biofilm outside the MRI scanner. Optical density OD600 of the media was always below 0.1 (Fig. S8† in ESI) indicating that oxygen input through the reactor and peripherals and the resulting planktonic growth of S. oneidensis was negligible.64
![]() | ||
| Fig. 2 Chronoamperometry at a potential of 0 mV vs. Ag/Cl reveals the rising current as result of S. oneidensis use of the electrode as electron acceptor (a) and the feasibility of MRI measurements while operating the bioelectrochemical reactor (b). In the standard medium M an electric defect of the reference electrode (marked with + in (b)) caused the breakdown of the current density, but a control measurement revealed that biofilm was still attached (in ESI†). | ||
Unfortunately, the reference electrode in the experiment with standard medium M was defective, leading to breakdown of the current production (marked with + in Fig. 2b). However, the subsequent control MR imaging (Fig. S7† in ESI) did reveal that the biofilm was still attached to the anode. Therefore, we assume that these experimental results are valid. Our focus was on the biofilm in the improved medium M* while the weak biofilm in the standard medium M should only demonstrate the higher resolution.
of each slice were calculated. Fig. 3b shows a comparison of depth profiles of these
for the electrode without biofilm (abiotic control) and with the biofilm in both media M and M*.
In the following the regions of the electrode with biofilm in the improved medium M* are discussed:
• Electrode without biofilm (slice A, z = 200 μm):
Slice A is placed at the center of the electrode and shows a rather homogenous T2 distribution.
in this region (slice A) was lower than in the medium (slice C and D,
∼ 1).
• Electrode with (maximum) biofilm (slice B, z = 400 μm):
The averaged
with biofilm (in both media M* and M) show a minimum close to the electrode growth medium interface. The minima are not present in the abiotic control (slight decrease is not significant) revealing that the biofilm reduces T2 relaxation time in accordance with other MRI studies of biofilms.48 The T2 heat maps in this region (slice B and Fig. S2† in ESI) show an inhomogeneous distribution indicating an uneven biofilm distribution inside the electrode.
• Growth medium (slice C and D, z ≤ 600 μm):
is defined as 1 in this region (normalization).
in this region is not reduced compared to the abiotic control neither by biofilm nor planktonic cells, indicating low cell densities.
Fig. 3b reveals differences in the biofilm formation for biofilms grown in both media. The biofilm in the improved medium M* is denser and thicker than in the standard medium M according to its lower
minimum (0.490 ± 0.018 vs. 0.687 ± 0.035) and its broader peak (300 μm vs. 250 μm). Please note: all given deviations (value after ±) were calculated based on the standard deviation of their corresponding values in the medium and do not reflect inhomogeneities of the biofilm. The width of the Tslice2,rel peak in the improved medium M* is mainly caused by the inhomogeneity of the biofilm and in particular by its curved shape (affecting the value Tslice2,rel minima, see ESI†). The lower
minimum in the improved medium M* might be related to the higher concentration of buffer and riboflavin and thus more biofilm mass.67 In both media, cells were found in the entire electrode (see fluorescence microscopy images Fig. S3† in ESI), but most of the biomass is almost exclusively present close to the interface of electrode to medium.
Accordingly, a large portion of the electrode is not or only marginally colonized by the biofilm. Hence, the total biofilm density and thereby the amount of biocatalyst in the electrode could be higher. The location of the biofilm at the electrode surface might be related to limited diffusive transport of nutrients into the depth of the fiber-biofilm structure and products, especially protons, out of it. To investigate this issue in the next section spatially resolved relative diffusion coefficients
were determined and calculated analogously to the determination of relative relaxation times
.
(see Materials and methods section) without and with biofilms in the standard medium M and in the improved medium M*. The profiles of the relative diffusion coefficients are similar to the relaxation times (Fig. 3b): For the uncolonized and the colonized electrode,
inside the center of the electrode (z ≤ 300 μm) is similar to
in the growth medium (z ≤ 600 μm) as the pores of the electrode are filled with medium (porosity >90%). A relative diffusion coefficient of 1 corresponds to a water diffusion coefficient
of 2.00 10−9 ± 0.17 10−9 m2 s−1 in the standard medium M and 1.94 10−9 ± 0.09 10−9 m2 s−1 in the improved medium M* related to temperatures of approximately 22 °C and 21 °C.69
The diffusion near the boundary between electrode and medium is reduced as compared to the electrode center and the growth medium. The minimum of the relative diffusion coefficient
in the improved medium M* is lower as compared to the standard medium M (0.448 ± 0.056 < 0.713 ± 0.087). The minima of the diffusion coefficients are in the same distance from the electrode surface as the minima of the relaxation times
. T2 and D* heat maps as well as the
and
profiles show a very high similarity. This similarity is in part caused by the diffusion weighting bias brought by the strong magnetic field gradients required for high resolution imaging.70 This effect attenuates T2-values of areas with unhindered diffusion more than those of diffusion restricted areas. Nevertheless, the well-known link of biofilm density and restricted diffusion17,19 is confirmed by the correlation of
and
(Fig. S6† in ESI).
The morphology and diffusion coefficients of the EABs grown inside porous electrodes in our study differ from the S. oneidensis biofilm grown on a flat surface analyzed with MRI by Renslow et al.35 Since biofilm formation from S. oneidensis on gold electrodes is often difficult, Renslow et al. pre-cultured a biofilm with a constant depth film fermenter, harvested it and transplanted it into the MRI reactor. For this reason, their biofilm exhibited a heterogenous morphology with individual biofilm clusters that settled on the flat gold electrode. In our case it has to be considered, that the colonization of individual S. oneidensis cells is different to the attachment of cell clusters, and that the colonization of cells inside electrospun carbon fibers is enhanced compared to a flat electrode. Therefore, the structure and the diffusion coefficients of our biofilms are more comparable to the uniform shape of Renslow's Geobacter sulfurreducens biofilm: it has a dense core, but in contrast to the G. sulfurreducens biofilm, the diffusion coefficients inside the S. oneidensis biofilm decrease on both, the fluid facing and the opposite sides. This underlines: biofilm properties such as morphology and diffusion coefficients vary substantially depending on the electrode and the cultivation conditions. While on a flat surface the EAB only has a limited surface for extracellular electron transfer (EET), an EAB inside a porous electrode can use more electrode volume for EET and that could support uniform biofilm growth within the electrode and more current production.
In porous materials with a high biofilm density and thus a high current production, proton transport from the individual cells to the bulk can become rate-limiting. Under such conditions, not only the electrode has an influence on the biofilm formation, but also the medium:67 assuming the same biofilm density, higher buffer capacity in the improved medium M* enhances diffusive transport of protons or the corresponding buffer molecules and thus provides lower local acidification of the anodic biofilm in the improved medium M* as compared to the standard medium M (lower buffer concentration). This allows the biofilm in the improved medium M* to continue to grow and to increase its density until its local acidification reaches the level of the biofilm in the standard medium M. Thus, high puffer capacities allow high diffusive proton transport rates and thus more biofilm mass.67
The higher biofilm mass could lead to a homogeneous distribution in the electrode (thicker biofilm) or to an increase in biofilm density in the front region (denser biofilm). The local increase of the biofilm density in the front region is equivalent to an increase in the biocatalyst in the region. Thus, the volumetric production of electrons and protons also increases. In this case, the protons are more concentrated in the front region. According to Fick's 1st law of diffusion, a steeper gradient in denser biofilms results in higher transport fluxes and thus higher currents.
We observed exactly that: the biofilm is mainly located around the interface of electrode and growth medium (see also fluorescence microscopy images in Fig. S3† in ESI) and higher buffer capacity result in a denser, but not thicker biofilms. This is well in line with Erben et al.64 who investigated the biofilm formation on the same material: under anaerobic conditions (OD < 0.1, similar to our experiments) more biofilm was found at the front (medium facing) side than on the backside as observed by scanning electron microscopy (SEM).64 However, the imaging techniques like SEM or fluorescence microscopy used in this context only provide information about the first few micrometers in depth. In contrast to these methods, MR imaging covers the entire volume and has previously been used to quantify the biofilm density.35,58 Unlike other bulk-based methods using dry weight, total nitrogen content, qPCR or protein analysis,13,46,50,61 the determination of biofilm density based on correlation of MRI parameters is in situ and non-destructive.
was calculated with
. In Fig. 4b for both media, the profile of the biofilm density
is plotted against the z-axis. The empirical relation translates low
to high biofilm densities. Thus, the maximum biofilm density coincides with
minima inside the electrode. Due to the lower
values, in the improved medium M* the maximum biofilm density
= 32.8 (28.8, 40.7) kg m−3 is higher than 9.6 (7.1, 17.1) kg m−3 determined in the standard medium M with lower buffer concentration. The values in brackets reflect the deviation of the biofilm density calculations and are based on the standard deviations of the relative diffusion coefficients in the medium. The upper limit is higher because the empirical Fan correlation is not linear.
The results of the Fan's empirical relationship and in particular the quantitative results should be treated with caution for at least three reasons:
• First, this relationship was derived from the characterization of aerobic biofilms on smooth surfaces, rotating cylinders, and bioflocs.17 The conditions in our experiments differ significantly: the use of porous 3D electrodes and a facultative anaerobic organism with a metabolism based on external electron transfer might result in different cell densities, Extracellular Polymeric Substance (EPS) and the production of conductive appendages, affecting the density of the biomass.
• Second, the diffusion coefficients for the entire biofilm were specified mostly using diffusion reaction models and diffusion cells, which both measure the transport of a specific species trough a compartment.17 This might differ significantly from the MRI approach determining the self-movement of water molecules in a compartment/sub volume/voxel.
• Third, compared to bulk diffusion coefficients the spatially resolved diffusion coefficients might be biased due to the non-linearity of the empiric correlation (Fig. S4f and S5† in ESI). Thus, variances introduced by higher noise levels at high resolution, subvolumes and the biofilm inhomogeneity can lead to different biofilm densities (discussed in ESI†).
• Fourth, the model from Fan et al. has been derived from data measuring the diffusion in the extracellular space of the biofilm. Similarly, in the present study the signal from the bacterial cytoplasm is attenuated due to the addition of the contrast agent Gd-DTPA, which reduces only the T1-relaxation time of the medium. Thus, the estimated diffusion coefficients are biased to the extracellular space which justifies to use the Fan model in order to calculate the biofilm density.
Therefore, it is even more important to validate the biofilm densities and their distribution determined by diffusion weighted MRI and the Fan correlation. For example, the cell count (not including EPS-matrix) or the total biomass in the electrode can be determined using qPCR assays or determination of the total nitrogen content.61,71,72 The validation we applied by qPCR and correlation of current per biomass (see ESI† for details) cannot confirm quantitatively the biofilm density but show a similar trend of a higher biofilm density in the improved medium M*.
In this study, MRI demonstrated that the ability of the porous electrospun electrode to host biofilm is not fully exploited. The determined biofilm density distribution within electrodes is inhomogeneous, as mostly the region around the interface of electrode to medium is colonized. The porous electrode could thus host higher biofilm densities in the deeper region, but also in the front region the biofilm density could thus be higher as a comparison to other biofilms shows.35 The question remains why only a part of the electrode is colonized and what can be deduced from the shape of the biofilm.
The transport through the biofilm is restricted by the biofilm itself. The consequence of the restricted diffusive transport in the biofilm and metabolism of the cells is the formation of a concentration gradient. Gradients in the electrode create microenvironments which influence the metabolism, the current production and the biofilm formation.2,13,23,24,75
For instance, if fresh medium with dissolved oxygen is present at the liquid facing side, in the anaerobic depth of the biofilm the terminal electron acceptor (TEA) is the electrode where the aerobic toplayer uses dissolved oxygen as TEA.76 Moreover, the directional motility of cells may prevent penetrating deeper due to the higher redox potential of oxygen compared to the potential of the anode.77 However, the observed optical density OD600 < 0.1 in the growth medium does not indicate a high amount of dissolved oxygen (Fig. S7† in ESI).
Biofilm formation in deep layers could also be prevented by the arising pH gradients/local acidification in deep layers of the biofilm/electrode.67 However, increasing the buffer concentration (from standard medium M to improved medium M*) does not, or only slightly, cause the biofilm to penetrate deeper into the electrode – instead, the biofilm density increases. But even in the improved medium M*, the biofilm density is not high enough to restrict transport of protons in the electrode completely. This can be deduced from the fact that the relative relaxation times
and diffusion coefficients
are reduced by a maximum of 55% inside the biofilm. Denser and not thicker biofilms enhance diffusive transport fluxes because the driving forces i.e., concentration gradients are higher. The higher transport flux of protons and their corresponding buffer molecules lead to higher current densities.
Thus, further research is needed to understand the specific connection between concentration gradients and biofilm formation in porous electrodes. Advanced NMR methods such as spectroscopic imaging, chemical exchange saturation transfer (CEST) and electrophoretic NMR in combination with electrochemical methods can further elucidate the dynamics of and inside the biofilm and its performance in bioelectrochemical systems.2,78–81
Footnote |
| † Electronic supplementary information (ESI) available. See https://doi.org/10.1039/d2ra01162j |
| This journal is © The Royal Society of Chemistry 2022 |