Open Access Article
Bei Jiangab,
Yang Liuab,
Jingchao Zhangb,
Yinhuan Wangb,
Xinyu Zhangb,
Renchun Zhangb,
Liang-Liang Huang
*a and
Daojun Zhang
*b
aSchool of Chemistry and Material Science, Liaoning Shihua University, Fushun 113001, Liaoning, P. R. China. E-mail: huangll@lnpu.edu.cn
bCollege of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, Henan, China. E-mail: zhangdj0410@sohu.com; Tel: +86 372 2900040
First published on 7th January 2022
Supercapacitors are known as promising excellent electrochemical energy storage devices because of their attractive features, including quick charge and discharge, high power density, low cost and high security. In this work, a series of litchi-like Ni–Co selenide particles were synthesized via a simple solvothermal method, and the Ni–Co compositions were carefully optimized to tune the charge storage performance, charge storage kinetics, and conductivity for battery-like supercapacitors. Interestingly, the optimal sample Ni0.95Co2.05Se4 exhibits a high capacity of 1038.75 F g−1 at 1 A g−1 and superior rate performance (retains 97.8% of the original capacity at 4 A g−1). Moreover, an asymmetric supercapacitor device was assembled based on the Ni0.95Co2.05Se4 cathode and activated carbon anode. The device of Ni0.95Co2.05Se4//active carbon (AC) reveals a peak energy density of 37.22 W h kg−1, and the corresponding peak power density reaches 800.90 W kg−1. This work provides a facile and effective way to synthesize transition metal selenides as high-performance supercapacitor electrode materials.
The pyrite-type NiCoSe4 is an ideal research model for supercapacitor, tuning of Ni/Co ratio in the structure may be an effect way to improve the sluggish kinetics.22 The NiCo2.1Se3.3NSs array electrode material with high conductivity and excellent specific capacitance of 742.4 F g−1 under 1 mA cm−2 was prepared by Wang et al., and still maintained 83.8% of the original capacity after 1000 cycles.23 In the all above reports, due to the good synergy between nickel and cobalt ions, the electrochemical performances of Co–Ni selenides have prominent advantages than single metal selenides, and according to current reports, researchers are often devoted to development of different structure materials to act as cathode materials for supercapacitor devices, however, rarely optimized Ni/Co compositions of Ni–Co–selenide carefully to tune charge storage performances for supercapacitor.
In this work, we present a simple one step solvothermal method to prepare spherical particles of Ni–Co–selenide with different ratios of nickel and cobalt ions, and the electrochemical properties of this series of products were studied. Surprisingly, the optimized Ni0.95Co2.05Se4 particles as supercapacitor electrode shows the highest capacity and distinguished cycling stability. Besides, the as-fabricated hybrid supercapacitor device (Ni0.95Co2.05Se4//AC) composed of selenide positive electrode and activated carbon negative electrode exhibits 45.86 mA h g−1 (104.68 F g−1) at 1 A g−1 and retains 95.21% of initial capacitance after 4000 cycles.
:
1,1
:
2, 1
:
2.2, 1
:
4 and 1
:
5.
:
1
:
1 in the mortar of mixed grinding, then adding 120 μL of NMP to grind into an ink-like black solution. The ink was evenly coated on a 1 × 1 cm2 nickel foam and then pressed at 10 MPa. Finally, a cathode electrode was obtained after vacuum-dried at 110 °C for 12 h. The manufacturing method of other sample electrodes is the same as above. The difference is that when assembling asymmetric supercapacitors, anode electrode plate was prepared via mixed with activated carbon, PTFE, and acetylene black in 8
:
1
:
1 ratio and evenly coated on nickel foam.
![]() | (1) |
![]() | ||
| Scheme 1 Schematic illustration for the synthesis of electrode materials and assemble the supercapacitor. | ||
![]() | (2) |
![]() | (3) |
![]() | (4) |
:
1, 1
:
2, 1
:
2.2, 1
:
4 and 1
:
5 to obtain a series of nickel cobalt selenides (NixCo3−xSe4). There was no significant difference in the morphology of the nickel–cobalt selenide particles, and their average diameters were around 191 to 243 nm, the detailed data is shown in Fig.S1, S2, and Table S1.† Fig. 1a shows the XRD patterns of the as-synthesized products at different proportions. The XRD peaks of pure Co3Se4 sample match well with the monoclinic phase Co3Se4 (ref. 28) with the PDF no. of 96-901-2804. With the increase of the content of nickel ions, the intensity of the diffraction peak remained unchanged, and the peak position shifted to left slightly. According to the Bragg equation 2d
sinθ = nλ, the radius of the metal nickel ions is larger than the radius of the cobalt ions, and this causing a slight negative shift of the diffraction peak in the Ni-doped products, the main diffraction peak of Ni1.14Co1.86Se4 at 33.2° matches well with the monoclinic Ni3Se4 (18-0890). Furthermore, the FWHM is inversely proportional to particle size, thus the pure Co3Se4 demonstrates the smallest particle size, the consequence is consistent with the statistical result shown in Fig. 1b. EDX analysis showed that the distribution of elements in each product was uniform and the proportion was close to the theoretical value (Fig. S3†). The calculated chemical formula of the synthesized samples is Co3Se4, Ni1.14Co1.86Se4, Ni0.95Co2.05Se4, Ni0.67Co2.33Se4, and Ni0.53Co2.47Se4, respectively.
As shown in Fig. 2a and b, SEM images of Ni0.95Co2.05Se4 sample show that the particles were uniform distributed without impurities, which allows the active material to be evenly distributed on the electrode surface to improve electrochemical properties. The growth mechanism of Ni0.95Co2.05Se4 sample was furthermore studied at different conditions. The SEM images of different synthesis temperatures and times are shown in Fig. S4a–h and S4i–p,† it clearly seen that low temperature and short-term reaction time have a great influence on the morphology. It is difficult to form at a low temperature of 100 °C even the reaction time till to 12 h, while reaction temperature reaches 160 °C, the yield is low in reaction time of 1 h. In addition, we have further studied the influence of reagent dosage on the morphology as shown in Fig. S5a–f.† Sample morphology with the absence of cyclohexane (Fig. S5a and b†), ethylene glycol (Fig. S5c and d†) and both (Fig. S5e and f†) will cause adhesion and aggregation (Fig. S5g and h†), which shows that a small amount of cyclohexane and ethylene glycol can maintain a uniform morphology. When change Ni/Co ratio to 2.2
:
1, the octahedron morphology can be obtained (Fig. S5g and h†). TEM images of Ni0.95Co2.05Se4 were further used to study the structure. The results are shown in Fig. 2c and d, which shows that the particles are about 194 nm solid architecture, and the lattice fringes of Ni0.95Co2.05Se4 sample can be clearly observed in high resolution TEM image (Fig. 2e). The lattice stripe spacing of 0.271 nm corresponds to the (−112) planes of Ni3Se4. Fig. 2f shows uniform distribution of Ni, Co, and Se elements in the sample of Ni0.95Co2.05Se4. The nitrogen sorption isotherms and the pore size distribution of five NixCo3−XSe4 samples with different ratios are shown in Fig. S6.† The BET specific surface area of Ni0.95Co2.05Se4 nanoparticles is 22.17 m2 g−1, where the presence of mesopores can be determined. However, the BET area of Co3Se4, Ni1.14Co1.86Se4, Ni0.67Co2.33Se4, and Ni0.53Co2.47Se4 is 15.92 m2 g−1, 12.64 m2 g−1, 9.0 m2 g−1, and 9.57 m2 g−1, respectively, which are all smaller than the Ni0.95Co2.05Se4 sample. It is clearly found that mean mesoporous size of Ni0.95Co2.05Se4 are smaller than others in the Fig. S6.† These data indicating that Ni0.95Co2.05Se4 particle has more active sites and a larger contact area with the electrolyte than other samples.
X-Ray photoelectron spectroscopy (XPS) is used to analyze the surface element constitution and electronic state of the Ni0.95Co2.05Se4 sample. Fig. 3a shows the survey scan spectrum of Ni0.95Co2.05Se4 sample, which exhibits the chemical states of Ni 2p, Co 2p, and Se 2p.29 After Gaussian fitting, three sets of peaks can be obtained from the 2p map of Ni, corresponding to two spin orbital peaks and two shake-up satellites. The peaks at 868.44 and 851.18 eV represent 2p3/2 and 2p1/2 of Ni2+, respectively (Fig. 3b). Besides, the peaks at 854.13 and 871.88 eV are attributed to 2p3/2 and 2p1/2 of Ni3+ in Ni0.95Co2.05Se4 particles.30–32 The peaks with binding energies of 795.15 and 779.28 eV in Fig. 3c correspond to Co2+, while the peaks located at 791.22 and 776.40 eV correspond to Co3+. Moreover, there are two distinct satellite peaks located in the combined energy of 800.76 and 783.84 eV.33–35 For the Se 3d spectra (Fig. 3d), there is a pair of metal-selenium bonds, which indicates the presence selenium ions in Ni0.95Co2.05Se4 nanoparticles. The broad peak situated at 57.24 eV reflects surface Se species with a high oxidation state (SeOx),36,37 which is attributed to a small amount of oxidation on the surface.
![]() | ||
| Fig. 3 XPS spectra of Ni0.95Co2.05Se4 (a) wide-scan survey spectrum, (b) Ni 2p, (c) Co 2p, and (d) Se 3d spectra. | ||
Using 2 M KOH aqueous solution as the electrolyte, the electrochemical properties of the working electrodes for supercapacitors were tested in a three-electrode system. Fig. S7† shows CV curves of Co3Se4, Ni1.14Co1.86Se4, Ni0.95Co2.05Se4, Ni0.67Co2.33Se4, and Ni0.53Co2.47Se4 samples at a scanning speed of 20 mV s−1. The curve of as-synthesized Ni0.95Co2.05Se4 exhibited the strongest redox peaks and largest closed area among the five samples. In Fig. S8,† obviously, the sample of Ni0.95Co2.05Se4 reveals the longest discharge time of the five electrodes, shows the best capacitance properties, which demonstrates the content of Ni/Co ratios has great influence on discharge capacity. Especially, the Ni0.95Co2.05Se4 delivers a capacity of 1038.75 F g−1 at a current density of 1 A g−1, while the corresponding capacity of Co3Se4, Ni1.14Co1.86Se4, Ni0.67Co2.33Se4, and Ni0.53Co2.47Se4 samples is 512.06, 762.74, 760.04, and 734.81 F g−1, respectively (Fig. S9†).
After comparing discharge curves of five different electrodes at 1 A g−1, it is concluded that the Ni0.95Co2.05Se4 electrode has the greatest energy storage capacity. Fig. 4a depicts the CV curves of Ni0.95Co2.05Se4 at different scan rates (5–50 mV s−1) under operating potential of 0–0.5 V. As the scan rate increased, the shape of these curves showed negligible changes but the intensity of these curves is increased. Therefore, the Ni0.95Co2.05Se4 electrode demonstrated fast electronic/ionic transport and high-rate capability. The GCD profiles of Ni0.95Co2.05Se4 in Fig. 4b exhibit quasi-symmetric shaped curves, indicating reversible redox reaction during the charging and discharging process. The specific capacities of the series of electrodes were calculated from the discharge time in the GCD curves and shown in Fig. 4c, remarkably, 94.58% of the initial capacitance could be retained for Ni0.95Co2.05Se4 electrode at a high current density of 10 A g−1, which also exhibits a higher specific capacity and rate performance compared with other samples. The energy density and power density curves of the samples were calculated according to the discharge curves, which shows in Fig. 4d. In general, the value of P increases but E decreases with the increase of current density. The Ni0.95Co2.05Se4 electrode can deliver a biggest energy density of 23.08 W h kg−1 at 1 A g−1 and the corresponding power density is 200.05 W kg−1. The energy density still reaches 22.04 W h kg−1 when the power density reaches 1609.54 W kg−1, and is higher than the energy density of the other samples.
The electrochemical impedance spectroscopy (EIS) of the nickel cobalt selenide series samples in the frequency range of 0.1 to 105 Hz are further studied. The Nyquist curves schematic of Co3Se4, Ni1.14Co1.86Se4, Ni0.95Co2.05Se4, Ni0.67Co2.33Se4, and Ni0.53Co2.47Se4 electrode materials are shown in Fig. 4e, the shapes of these five samples are similar, a semicircle in the high frequency region represents the charge transfer resistance, and the straight line in the low frequency region represents the diffusion resistance, this corresponds to the Bode plot diagram in Fig. S10.† After fitting, these electrodes have the same equivalent circuit. It is clear seen that the introducing Ni ions in Co3Se4 lattice can effectively decrease the solution resistance (Rs). Due to the intrinsic half-metallic behavior, Co3Se4 exhibits small charge transfer resistance, as increasing Ni content to 32% in Ni0.95Co2.05Se4, the Rct decrease dramatically, indicating that the charge transfer speed is much faster.38 Furthermore, according to the diffusion coefficient formula,39 the diffusion coefficient value of Ni0.95Co2.05Se4 is the largest among all the samples (Table S2†), this may be related to the effective diffusion of the OH− in Ni0.95Co2.05Se4 sample. Fig. 4f describes the cycling performance of the Co3Se4, Ni1.14Co1.86Se4, Ni0.95Co2.05Se4, Ni0.67Co2.33Se4 and Ni0.53Co2.47Se4 electrodes. The Ni0.95Co2.05Se4 electrode exhibits a specific capacitance of 625.27 F g−1 (61.55% capacitance retention) after 4000 cycles at a current density of 4 A g−1, whereas the others electrode exhibits a lower capacitance of 426.75, 493.47, 468.2, and 561.44 F g−1 after 4000 cycles at a current density of 4 A g−1, respectively. Although the retention rate is not higher than other sample electrodes, the capacity after cycling is still higher than other capacity values. The Ni0.95Co2.05Se4 electrode presents better electrochemical properties than some of the related supercapacitor electrode materials reported in the literature (Table S3†). Furthermore, the charge storage mechanism of the as-prepared series of electrode materials was investigated by fitting the plots of logarithmic anodic peak current versus logarithmic scan rate. According to the equation log(i) = b
log(v)+log(a), the plot slope b of 0.5 and 1.0 is the contribution of the electrochemical process dominated by ionic diffusion and surface capacitive control process.40 As shown in Fig. S11a,† the calculated b value of Co3Se4, Ni1.14Co1.86Se4, Ni0.95Co2.05Se4, Ni0.67Co2.33Se4, and Ni0.53Co2.47Se4 electrode is 0.795, 0.717, 0.707, 0.888, and 0.967, respectively, which indicated the diffusion contribution is dominant in Ni0.95Co2.05Se4 electrode. The result is consistent with the 58% diffusion contribution of the capacitance at low scan speed of 10 mV s−1, conversely, capacitive contribution enlarged at high rate for Ni0.95Co2.05Se4 electrode (Fig. S11b†).
In order to further investigate the electrical properties of NixCo3−XSe4 in practical applications, the HSC devices are assembled by using activated carbon as the negative electrode and the series of NixCo3−XSe4 samples as the positive electrode. Fig. 5a displays the CV curves with a voltage window of −1.2–0 and 0–0.5 V for the activated carbon and Ni0.95Co2.05Se4 electrodes at 5 mV s−1 in a three-electrodes system, respectively. The charge and discharge of the carbon electrode forms an approximately rectangular CV curve, and anodic active material exhibits a pair of strong redox peaks. Fig. S12a† shows the CV curves of 10 mV s−1 under different test ranges from 1.2–2.0 V. When the voltage range from 1.2 V to 1.4 V is selected, the corresponding Faraday effect is not reflected well, and when the voltage is further increased to 1.8 V and 2.0 V, the electrode material is polarized and damaged for oxygen evolution reaction as shown in Fig. S11b,† therefore, a suitable voltage window of 0–1.6 V was selected for Ni0.95Co2.05Se4//AC device. Fig. 5b and Fig. S13† show the CV curves of the Ni0.95Co2.05Se4//AC and other HSCs at various scan rates, respectively. The current response gradually increases with the rise of the scan rates, and a little redox peak position was found to be stable at 0.85 and 1.1 V. The charges storage mechanism of Ni0.95Co2.05Se4//AC HSC was also characterized by CV technique at the scan speed of 5–50 mV s−1, the calculated value of b is 0.897 (Fig. S14†), it shows that the process is major dominated by surface capacitive control and involved in diffusion-controlled behavior. In order to compare the contribution ratios of the two behaviors at different scan rate, the calculated results were shown in Fig. 5d. The pseudocapacitive property increases from 60.8% to 82% with increase the scan rate from 5 to 50 mV s−1, indicating the capacitive contribution is participating in charge storage at high rate for Ni0.95Co2.05Se4//AC HSC. The charging–discharging voltage profiles of the Ni0.95Co2.05Se4//AC HSC and other HSCs at a series of current densities from 1 to 10 A g−1 are approximately symmetric (Fig. 5c and S15†), which manifests the special nature of the excellent coulombic efficiency and superior electrochemical reversibility. The specific capacitance of Ni0.95Co2.05Se4//AC HSC calculated from the discharge time is 45.9 mA h g−1 at 1 A g−1, and it still maintains 34.2 mA h g−1 at 10 A g−1. The impedance diagram of the HSC is shown in Fig. 5f, the fitting result of Rs and Rct is 2.961 Ω and 1.831 Ω, respectively. The cycling performance of Ni0.95Co2.05Se4//AC HSC was further investigated by repeated GCD tests at 4 A g−1 (Fig. 5e). The specific capacity Ni0.95Co2.05Se4//AC HSC retains 95.21% of the initial capacity and coulomb efficiency keeps 96.71% after 4000 cycles, respectively, suggesting that the constructed HSC possesses superior long-term electrochemical stability.
In practical applications, energy density and power density are two important factors that determine the quality of energy storage equipment. Fig. 6 shows the energy density and power density of the assembled Ni0.95Co2.05Se4//AC HSC and other related supercapacitor devices. By comparison, the specific energy/power densities of our constructed Ni0.95Co2.05Se4//AC HSC is no less than or even better than the previous related ASC devices. The corresponding devices are NiSe–Se@NF//AC@Ni (29.9 W h kg−1 at 594.46 W kg−1),41 NCS/NGF//AC (36.8 W h kg−1 at 375 W kg−1),42 NiSe@MoSe2//N-PMCN (32.6 W h kg−1 at 415 W kg−1),43 Ni0.85Se@MoSe2//GNS (25.5 W h kg−1 at 420 W kg−1),44 Ni3Se2-24//AC (22.3 W h Kg−1 at 160.4 W kg−1),32 NiSe2@CNT//AC (25.61 W h kg−1 at 810 W kg−1),45 NiCo2O4@Ni0.85Se//AC (29.3 W h kg−1 at 799 W kg−1),46 Ni3Se2 3D HMNN//AC (38.4 W h kg−1 at 794.5 W kg−1).37 These above results suggest that the Ni0.95Co2.05Se4//C device possesses remarkable energy storage capability and cycling stability, which demonstrate greatly practical applications in energy storage devices.
![]() | ||
| Fig. 6 Ragone plot the assembled Ni0.95Co2.05Se4//AC ASC supercapacitor and other related supercapacitors. | ||
Footnote |
| † Electronic supplementary information (ESI) available: Size distribution of the of bimetallic nickel cobalt selenide particles, EDX spectrometography of these samples, SEM spectrometography of different samples. Co3Se4, Ni1.14Co1.86Se4, Ni0.67Co2.33Se4, Ni0.53Co2.47Se4. CV, GCD curves, and Nyquist plot of Co3Se4 and Ni0.53Co2.47Se4. See DOI: 10.1039/d1ra08678b |
| This journal is © The Royal Society of Chemistry 2022 |