Issue 5, 2022

Tin oxide based nanostructured materials: synthesis and potential applications

Abstract

In view of their inimitable characteristics and properties, SnO2 nanomaterials and nanocomposites have been used not only in the field of diverse advanced catalytic technologies and sensors but also in the field of energy storage such as lithium-ion batteries and supercapacitors, and in the field of energy production such as solar cells and water splitting. This review discusses the various synthesis techniques such as traditional methods, including processes like thermal decomposition, chemical vapor deposition, electrospinning, sol–gel, hydrothermal, solvothermal, and template-mediated methods and green methods, which include synthesis through plant-mediated, microbe-mediated, and biomolecule-mediated processes. Moreover, the advantages and limitations of these synthesis procedures and how to overcome them that would lead to future research are also discussed. This literature also focuses on various applications such as environmental remediation, energy production, energy storage, and removal of biological contaminants. Therefore, the rise and journey of SnO2-based nanocomposites will motivate the modern generation of chemists to modify and design robust nanoparticles and nanocomposites that can effectively tackle significant environmental challenges. This overview concludes by providing future perspectives on research into tin oxide in synthesis and its various applications.

Graphical abstract: Tin oxide based nanostructured materials: synthesis and potential applications

Article information

Article type
Review Article
Submitted
24 Oct 2021
Accepted
15 Dec 2021
First published
16 Dec 2021

Nanoscale, 2022,14, 1566-1605

Tin oxide based nanostructured materials: synthesis and potential applications

S. R. Mishra and Md. Ahmaruzzaman, Nanoscale, 2022, 14, 1566 DOI: 10.1039/D1NR07040A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements