Issue 5, 2022

Origin of multiple voltage plateaus in P2-type sodium layered oxides

Abstract

Although layered transition metal (TM) oxides have attracted considerable attention for cathode materials of sodium-ion batteries, they suffer from uncontrolled multiple voltage plateaus due to local structure transformations such as TM-layer gliding and Na+/vacancy ordering upon Na+ extraction and insertion. However, the intrinsic origins of these local structure transformations are not fully understood, preventing the rational design of better cathode materials. Here, we concentrate on Na+/vacancy ordering in single phase domains to reveal the underlying mechanism of multiple voltage plateaus by tracking desodiation-induced electronic structure evolutions of two typical compounds, P2-Na0.6[Cr0.6Ti0.4]O2 and P2-NaCrO2. During desodiation, P2-NaCrO2 generates obvious multiple voltage plateaus, which are not observed in P2-Na0.6[Cr0.6Ti0.4]O2 due to TM disordering. A combination of first-principles desodiation calculations and electronic structure analysis reveals that charge localization accompanied by Na+ migration is an intrinsic feature of multiple voltage plateaus in P2-NaCrO2. A correlation between charge localization and multiple voltage plateaus is established by a comparative study in which P2-Na0.6[Cr0.6Ti0.4]O2 always follows the charge transfer order from high-activity to low-activity sites. This finding reveals that disordering design of active sites to avoid charge localization in redox is of much importance for developing high-performance Na-ion cathode materials.

Graphical abstract: Origin of multiple voltage plateaus in P2-type sodium layered oxides

Supplementary files

Article information

Article type
Communication
Submitted
10 Dec 2021
Accepted
15 Feb 2022
First published
16 Feb 2022

Mater. Horiz., 2022,9, 1460-1467

Origin of multiple voltage plateaus in P2-type sodium layered oxides

Y. Gan, Y. Li, H. Li, W. Qiu and J. Liu, Mater. Horiz., 2022, 9, 1460 DOI: 10.1039/D1MH01991K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements