Issue 8, 2022

Immunomodulatory activity of Senegalia macrostachya (Reichenb. ex DC.) Kyal. & Boatwr seed polysaccharide fraction through the activation of the MAPK signaling pathway in RAW264.7 macrophages

Abstract

Senegalia macrostachya (Reichenb. ex DC.) Kyal. & Boatwr seed (SMS) is a wild legume used as food and medicine in many African countries. In the current study, a novel polysaccharide (SMSP2) was extracted from SMS using hot water and purified with DEAE-52 cellulose. Its structure was characterized, and the immunomodulatory activity and possible molecular mechanism in murine macrophage RAW264.7 were explored. The results revealed that SMSP2 was a uronic acid-rich polysaccharide (51.6%, w/w) with a molecular weight of 52.07 kDa. The neutral sugars were mainly arabinose, xylose, mannose, and galactose at a molar ratio of 1.00 : 0.84 : 0.90 : 0.07. Interestingly, SMSP2 treatment markedly promoted macrophage proliferation and phagocytosis and induced the expression of inflammatory mediators, such as nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-10. SMSP2-induced macrophage stimulation occurs through the activation of the mitogen-activated protein kinase (MAPK) signaling pathway. Moreover, macrophage surface complement receptor 3 (CR3) might play an important role in SMSP2-induced macrophage activation. This study revealed that SMSP2 is a potent immunomodulator, which could be used as a functional food and a pharmaceutical adjuvant in treating immune-compromising diseases.

Graphical abstract: Immunomodulatory activity of Senegalia macrostachya (Reichenb. ex DC.) Kyal. & Boatwr seed polysaccharide fraction through the activation of the MAPK signaling pathway in RAW264.7 macrophages

Supplementary files

Article information

Article type
Paper
Submitted
29 Dec 2021
Accepted
07 Mar 2022
First published
11 Mar 2022

Food Funct., 2022,13, 4664-4677

Immunomodulatory activity of Senegalia macrostachya (Reichenb. ex DC.) Kyal. & Boatwr seed polysaccharide fraction through the activation of the MAPK signaling pathway in RAW264.7 macrophages

A. W. Zongo, D. Zogona, Z. Zhang, M. Youssef, P. Zhou, Y. Chen, F. Geng, Y. Chen, J. Li and B. Li, Food Funct., 2022, 13, 4664 DOI: 10.1039/D1FO04432J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements