Open Access Article
This Open Access Article is licensed under a
Creative Commons Attribution 3.0 Unported Licence

Correction: Concentrations and properties of ice nucleating substances in exudates from Antarctic sea-ice diatoms

Yu Xi a, Alexia Mercier b, Cheng Kuang c, Jingwei Yun a, Ashton Christy a, Luke Melo a, Maria T. Maldonado c, James A. Raymond d and Allan K. Bertram *a
aDepartment of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada. E-mail: bertram@chem.ubc.ca
bDepartment of Chemistry, Sorbonne University, 4 Place Jussieu, 75005 Paris, France
cDepartment of Earth, Ocean & Atmospheric Sciences, University of British Columbia, 2020 – 2207 Main Mall, Vancouver, BC V6T 1Z4, Canada
dSchool of Life Sciences, University of Nevada, 4505 S. Maryland Pkwy., Las Vegas, NV89154, USA

Received 2nd February 2022 , Accepted 2nd February 2022

First published on 15th February 2022


Abstract

Correction for ‘Concentrations and properties of ice nucleating substances in exudates from Antarctic sea-ice diatoms’ by Yu Xi et al., Environ. Sci.: Processes Impacts, 2021, 23, 323–334, DOI: 10.1039/D0EM00398K.


In Fig. 4 of the original paper, the wrong data was plotted for Skeletonema marinoi. Mistakenly, the authors plotted the number of INS per mass of DOC instead of the number of INS per mass of total material for Skeletonema marinoi. The correct Fig. 4 is shown below. The conclusion reached from the comparison of INS concentrations of different diatom samples in the original paper was that the ice nucleating abilities of sea-ice diatom and temperate diatom samples were similar. The correct Fig. 4 provides stronger support for this conclusion. Some of the references in the original caption were incorrect and the new, correct references have now been added in the caption below.
image file: d2em90004a-f4.tif
Fig. 4 Number of INSs per mass of total material, nm,total, for the Nitzschia supernatant sample and cultured sea ice diatom and temperate diatom samples from Ickes et al.1 For the cultured samples, the total mass of material in the cultures was estimated using their reported number of cells1 and assuming a cell density of 1 g cm−3 and cell volume of 653 and 125 μm3 for Melosira arctica and Skeletonema marinoi respectively.2 The error bars were calculated based on 95% confidence intervals from the nucleation statistics.3 Also included for comparison are INSs per mass of material for other atmospherically relevant INSs.1,4–8

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

References

  1. L. Ickes, G. C. E. Porter, R. Wagner, M. P. Adams, S. Bierbauer, A. K. Bertram, M. Bilde, S. Christiansen, A. M. L. Ekman, E. Gorokhova, K. Höhler, A. A. Kiselev, C. Leck, O. Möhler, B. J. Murray, T. Schiebel, R. Ullrich and M. E. Salter, The ice-nucleating activity of Arctic sea surface microlayer samples and marine algal cultures, Atmos. Chem. Phys., 2020, 20, 11089–11117 CrossRef CAS.
  2. I. Olenina, S. Hajdu, L. Edler, A. Andersson, N. Wasmund, S. Busch, J. Göbel, S. Gromisz, S. Huseby, M. Huttunen, A. Jaanus, P. Kokkonen, I. Ledaine and E. Niemkiewicz, Biovolumes and size-classes of phytoplankton in the Baltic sea, Balt. Sea Environ. Proc., 2006, 106, 1–144 Search PubMed.
  3. T. Koop, B. Luo, U. M. Biermann, P. J. Crutzen and T. Peter, Freezing of HNO3/H2SO4/H2O solutions at stratospheric temperatures: nucleation statistics and experiments, J. Phys. Chem. A, 1997, 101, 1117–1133 CrossRef CAS.
  4. H. Wex, S. Augustin-Bauditz, Y. Boose, C. Budke, J. Curtius, K. Diehl, A. Dreyer, F. Frank, S. Hartmann, N. Hiranuma, E. Jantsch, Z. A. Kanji, A. Kiselev, T. Koop, O. Möhler, D. Niedermeier, B. Nillius, M. Rösch, D. Rose, C. Schmidt, I. Steinke and F. Stratmann, Intercomparing different devices for the investigation of ice nucleating particles using Snomax® as test substance, Atmos. Chem. Phys., 2015, 15, 1463–1485 CrossRef CAS.
  5. D. O’Sullivan, B. J. Murray, J. F. Ross, T. F. Whale, H. C. Price, J. D. Atkinson, N. S. Umo and M. E. Webb, The relevance of nanoscale biological fragments for ice nucleation in clouds, Sci. Rep., 2015, 5, 8082 CrossRef PubMed.
  6. S. Augustin-Bauditz, H. Wex, C. Denjean, S. Hartmann, J. Schneider, S. Schmidt, M. Ebert and F. Stratmann, Laboratory-generated mixtures of mineral dust particles with biological substances: characterization of the particle mixing state and immersion freezing behavior, Atmos. Chem. Phys., 2016, 16, 5531–5543 CrossRef CAS.
  7. S. Augustin, H. Wex, D. Niedermeier, B. Pummer, H. Grothe, S. Hartmann, L. Tomsche, T. Clauss, J. Voigtländer, K. Ignatius and F. Stratmann, Immersion freezing of birch pollen washing water, Atmos. Chem. Phys., 2013, 13, 10989–11003 CrossRef CAS.
  8. Y. Ren, A. K. Bertram and G. N. Patey, Effects of inorganic ions on ice nucleation by the Al surface of kaolinite immersed in water, J. Phys. Chem. B, 2020, 124, 4605–4618 CrossRef CAS PubMed.

This journal is © The Royal Society of Chemistry 2022
Click here to see how this site uses Cookies. View our privacy policy here.