Issue 3, 2022

Secondary organic aerosol formation from monocyclic aromatic hydrocarbons: insights from laboratory studies

Abstract

Monocyclic aromatic hydrocarbons (MAHs) are key anthropogenic pollutants and often dominate the volatile organic compound emissions and secondary organic aerosol (SOA) formation especially in the urban atmosphere. To evaluate the environmental impacts of SOA formed from the oxidation of MAHs (aromatic SOA), it is of great importance to elucidate their chemical composition, formation mechanism, and physicochemical properties under various atmospheric conditions. Here we seek to compile a common framework for the current studies on aromatic SOA formation and summarize the knowledge on what has been primarily learned from laboratory studies. This review begins with a brief summary of MAHs' emission characteristics, followed by an overview of atmospheric degradation mechanisms for MAHs as well as gas- and particle-phase reactions involving aromatic SOA formation. SOA formation processes highlighted in this review are complex and depend highly on environmental conditions, posing a substantial challenge for theoretical description of aromatic SOA formation. Therefore, the following issues are further discussed in detail: the response of gas-phase chemistry and aromatic SOA mass yield as well as composition to NOx levels, particle-phase reactions and molecular characterization of aromatic SOA in the presence of acidic sulfate, and physicochemical processes of SOA formation involving gas- or particle-phase water. Building on this current understanding, available experimental studies on the effects of environmental conditions were explored. A brief description of the atmospheric importance of aromatic SOA including their optical properties and health influences is also presented. Finally, we highlight the current challenges in laboratory studies and outline directions for future aromatic SOA research.

Graphical abstract: Secondary organic aerosol formation from monocyclic aromatic hydrocarbons: insights from laboratory studies

Article information

Article type
Critical Review
Submitted
01 Oct 2021
Accepted
26 Jan 2022
First published
03 Feb 2022

Environ. Sci.: Processes Impacts, 2022,24, 351-379

Secondary organic aerosol formation from monocyclic aromatic hydrocarbons: insights from laboratory studies

Z. Yang, L. Du, Y. Li and X. Ge, Environ. Sci.: Processes Impacts, 2022, 24, 351 DOI: 10.1039/D1EM00409C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements