Issue 3, 2022

Safeguarding the RuO2 phase against lattice oxygen oxidation during acidic water electrooxidation

Abstract

Defective RuO2 possesses excellent initial activity toward the oxygen evolution reaction in acidic water electrooxidation due to the involvement of lattice oxygens, which, however, is the very reason for the accelerated dissolution of Ru species. Therefore, it is crucial to steer the electrochemical oxygen evolution towards the adsorbate evolution mechanism (AEM) for improved durability of the RuO2 phase in acidic electrolytes. Herein, we developed a method to mix Pt atoms with the RuO2 matrix in a controlled manner by exploiting the oxophilicity of certain first-row transition metals in pulling out the Pt atoms in Pt-based nanorod@Ru under oxidative conditions. The resulting nanorod-shaped PtCo–RuO2/C showed 212.6 ± 5.3 mV overpotential at 10 mA cm−2 in a half-cell test and exhibited mass activity and long-term stability that greatly surpass those of Pt–RuO2/C and commercial Ir/C. Microscopic and spectroscopic analyses and density functional theory calculation of the nanocatalysts before and after OER cycles were conducted to scrutinize the role of Pt dopants for the observed durability and activity, revealing that Pt dopants promote *OOH adsorption and deprotonation, thereby limiting Ru overoxidation during OER cycles. When PtCo–RuO2/C was applied to a proton-exchange membrane water electrolyzer, it showed a single-cell performance of 3.7 A mgRu+Pt−1 at 2.0 V, which greatly outperforms that of commercial IrO2.

Graphical abstract: Safeguarding the RuO2 phase against lattice oxygen oxidation during acidic water electrooxidation

Supplementary files

Article information

Article type
Paper
Submitted
24 Aug 2021
Accepted
11 Nov 2021
First published
12 Nov 2021

Energy Environ. Sci., 2022,15, 1119-1130

Safeguarding the RuO2 phase against lattice oxygen oxidation during acidic water electrooxidation

H. Jin, S. Choi, G. J. Bang, T. Kwon, H. S. Kim, S. J. Lee, Y. Hong, D. W. Lee, H. S. Park, H. Baik, Y. Jung, S. J. Yoo and K. Lee, Energy Environ. Sci., 2022, 15, 1119 DOI: 10.1039/D1EE02636D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements