Molecular precursor-mediated facile synthesis of photo-responsive stibnite Sb2S3 nanorods and tetrahedrite Cu12Sb4S13 nanocrystals†
Abstract
Stibnite Sb2S3 and tetrahedrite Cu12Sb4S13 nanostructures being economical, environmentally benign and having a high absorption coefficient are highly promising materials for energy conversion applications. However, producing these materials especially tetrahedrite in the phase pure form is a challenging task. In this report we present a structurally characterized single source molecular precursor [Sb(4,6-Me2pymS)3] for the facile synthesis of binary Sb2S3 as well as ternary Cu12Sb4S13 in oleylamine (OAm) at a relatively lower temperature. The as-prepared Sb2S3 and Cu12Sb4S13 nanostructures were thoroughly checked for their phase purity, elemental composition and morphology by powder X-ray diffraction (pXRD), electron dispersive spectroscopy (EDS) and electron microscopy techniques. pXRD and EDS studies confirm the formation of phase pure, crystalline orthorhombic Sb2S3 and cubic Cu12Sb4S13. The SEM, TEM and HRTEM images depict the formation of well-defined nanorods and nearly spherical nanocrystals for Sb2S3 and Cu12Sb4S13, respectively. The Sb2S3 nanorods and Cu12Sb4S13 nanocrystals exhibit an optical bandgap of ∼1.88 and 2.07 eV, respectively, which are slightly blue-shifted relative to their bulk bandgap, indicating the quantum confinement effect. Finally, efficient photoresponsivity and good photo-stability were achieved in the as-prepared Sb2S3 and Cu12Sb4S13 nanostructure-based prototype photo-electrochemical cell, which make them promising candidates for alternative low-cost photon absorber materials.