Issue 29, 2022

A novel star-shaped trinuclear platinum(ii) complex based on a 1,3,5-triazine core displaying potent antiproliferative activity against TNBC by the mitochondrial injury and DNA damage mechanism

Abstract

Polynuclear platinum(II) complexes represent a class of great prospective Pt-based antitumor drugs that may expand the antitumor spectrum and overcome the clinical problems of drug resistance and side effects of platinum-based drugs. Herein, a novel star-shaped trinuclear platinum(II) complex [Pt3(L–3H)Cl3] (1, L = 2,4,6-tris[(2-hydroxybenzyl)(2-pyridylmethyl)amine]-1,3,5-triazine) and its monomer [Pt(L′–H)Cl] (2, L′ = (2-hydroxybenzyl)(2-pyridylmethyl)amine) were synthesized and characterized. The in vitro antiproliferative activities of complexes 1 and 2 against a panel of human cancer cell lines including MDA-MB-231 (triple-negative breast cancer, TNBC), MCF-7 (breast), HepG-2 (liver), and A549 (lung) were investigated. The results revealed that 1 exhibited much higher antiproliferative properties than its monomer 2 against the tested cell lines. Importantly, 1 possessed 3.3-fold higher antiproliferative activity as compared with cisplatin against the TNBC cell line MDA-MB-231. Another TNBC cell line MDA-MB-468 is also sensitive to 1. The results indicated that 1 might have the potential to act as a candidate for the treatment of TNBC. Cellular uptake and distribution studies showed that 1 could pass through the membrane of cells and enter into cells and mainly accumulate in the nuclei and mitochondria. 1 could bind to DNA in a cooperative groove-electrostatic-platinating binding mode and induce stronger DNA double-strand breaks (DSBs) and damaging effects on MDA-MB-231 than cisplatin (upregulation of γ-H2AX). Moreover, the DNA damage could not be easily repaired (upregulation of p53), which would exert a much positive influence on the overcoming of drug resistance. Additionally, flow cytometry studies showed that 1 arrested the cell cycle in the G0/G1 phase, induced mitochondrial membrane depolarization, increased ROS generation, and induced cell apoptosis. The results demonstrated that 1 could target simultaneously mitochondria and nuclei that gave rise to mitochondrial injury and DNA damage and ultimately efficiently promote the apoptotic death of tumor cells. Further mechanistic studies showed that 1 induced MDA-MB-231 cell apoptosis via the p53-mediated mitochondrial pathway by upregulating Bax and cytochrome c and downregulating Bcl-2 proteins, leading to the activation of caspase-3 and upregulation of the cleaved-PARP level. Taken together, 1 with such a synergic mechanism has great potential to be an effective anticancer agent that can overcome treatment resistance in TNBC.

Graphical abstract: A novel star-shaped trinuclear platinum(ii) complex based on a 1,3,5-triazine core displaying potent antiproliferative activity against TNBC by the mitochondrial injury and DNA damage mechanism

Supplementary files

Article information

Article type
Paper
Submitted
23 Mar 2022
Accepted
09 Jun 2022
First published
10 Jun 2022

Dalton Trans., 2022,51, 10930-10942

A novel star-shaped trinuclear platinum(II) complex based on a 1,3,5-triazine core displaying potent antiproliferative activity against TNBC by the mitochondrial injury and DNA damage mechanism

Y. Wu, D. Zhao, J. Shang, W. Huang and Z. Chen, Dalton Trans., 2022, 51, 10930 DOI: 10.1039/D2DT00895E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements