A first-principles study on the phase stability and physical properties of a B-site ordered Nd2CrFeO6 double perovskite
Abstract
Here, the first-principles predictions on the structural stability, magnetic behavior and electronic structure of B-site ordered double perovskite Nd2CrFeO6 have been reported. Initially, the ground state of the parent single perovskites NdCrO3 and NdFeO3 has been studied to determine the relevant Hubbard U parameter to investigate the properties of Nd2CrFeO6. The thermodynamic, mechanical, and dynamic stability analyses suggest the possibility of the synthesis of the Nd2CrFeO6 double perovskite at ambient pressure. The compound shows a ferrimagnetic nature with 2 μB net magnetic moment and the magnetic ordering temperature has been estimated to be ∼265 K. The electronic structure indicates a higher probability of direct photon transition over the indirect transition with a band gap of ∼1.85 eV. Additional effects of Nd (4f) spin and spin–orbit coupling on the band edges have been found to be negligible for this 4f–3d–3d spin system. This first-principles investigation predicts that due to the ferrimagnetic nature and a significantly lower band gap compared to those of its antiferromagnetic parent single perovskites, the B-site ordered Nd2CrFeO6 double perovskite could be a promising material for spintronic and visible-light driven energy applications.