Issue 43, 2022

Flow technology enabled preparation of C3-heterosubstituted 1-azabicyclo[1.1.0]butanes and azetidines: accessing unexplored chemical space in strained heterocyclic chemistry

Abstract

The use of flow technology as an enabling tool for accessing 1-azabicyclo[1.1.0]butanes bearing strained 3-, 4-, and 5-membered O-heterocycles with C3(N-het)–C2(O-het) connectivity is reported. Reactivity and chemoselectivity (N-ring vs. O-ring) were also evaluated. New chemical space has been explored and new structural motifs such as ABB-aziridines or spiro azetidine-oxazetidines are also reported.

Graphical abstract: Flow technology enabled preparation of C3-heterosubstituted 1-azabicyclo[1.1.0]butanes and azetidines: accessing unexplored chemical space in strained heterocyclic chemistry

Supplementary files

Article information

Article type
Communication
Submitted
22 Mar 2022
Accepted
03 May 2022
First published
03 May 2022

Chem. Commun., 2022,58, 6356-6359

Flow technology enabled preparation of C3-heterosubstituted 1-azabicyclo[1.1.0]butanes and azetidines: accessing unexplored chemical space in strained heterocyclic chemistry

P. Musci, M. Colella, M. Andresini, A. Aramini, L. Degennaro and R. Luisi, Chem. Commun., 2022, 58, 6356 DOI: 10.1039/D2CC01641A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements