Issue 42, 2019

Towards understanding the active sites for the ORR in N-doped carbon materials through fine-tuning of nitrogen functionalities: an experimental and computational approach

Abstract

The design of advanced N-doped carbon materials towards oxygen reduction reaction (ORR) catalysis is only possible if the nature of the active sites is fully understood. There is an important piece of research seeking to overcome this challenge through experimental or theoretical results. However, the combination of both approaches is necessary to deepen the knowledge about this subject. This work presents excellent agreement between experimental results and computational models, which provides evidence of the nature of the most active sites in N-doped carbon materials. N-doped carbon materials have been experimentally obtained through double stage treatment of polyaniline in distinct atmospheres (both oxygen-containing and inert atmospheres) at different temperatures (800–1200 °C). According to temperature programmed desorption (TPD), Raman spectroscopy, N2-adsorption isotherms at −196 °C and X-ray photoelectron spectroscopy (XPS), this synthesis method results in the selective formation of nitrogen species, without significant changes in structural order or porosity. ORR catalytic tests evidence the highly efficient catalysis, with platinum-like performance in terms of the current density and onset potential, of N-doped carbon materials selectively containing graphitic-type nitrogen species. Computational chemistry, through DFT calculations, shows that edge-type graphitic nitrogen is more effective towards ORR catalysis than pyridinic, pyrrolic, pyridonic, oxidized and basal-type graphitic nitrogen species.

Graphical abstract: Towards understanding the active sites for the ORR in N-doped carbon materials through fine-tuning of nitrogen functionalities: an experimental and computational approach

Article information

Article type
Paper
Submitted
22 Jul 2019
Accepted
26 Sep 2019
First published
27 Sep 2019

J. Mater. Chem. A, 2019,7, 24239-24250

Towards understanding the active sites for the ORR in N-doped carbon materials through fine-tuning of nitrogen functionalities: an experimental and computational approach

J. Quílez-Bermejo, M. Melle-Franco, E. San-Fabián, E. Morallón and D. Cazorla-Amorós, J. Mater. Chem. A, 2019, 7, 24239 DOI: 10.1039/C9TA07932G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements