Open Access Article
This Open Access Article is licensed under a
Creative Commons Attribution 3.0 Unported Licence

Correction: Tuning trion binding energy and oscillator strength in a laterally finite 2D system: CdSe nanoplatelets as a model system for trion properties

Sabrine Ayari a, Michael T. Quick b, Nina Owschimikow b, Sotirios Christodoulou c, Guillaume H. V. Bertrand d, Mikhail Artemyev e, Iwan Moreels f, Ulrike Woggon b, Sihem Jaziri ag and Alexander W. Achtstein *b
aLaboratoire de Physique des Materiaux, Faculte des Sciences de Bizerte, Universite de Carthage, Jarzouna 7021, Tunisia
bInstitute of Optics and Atomic Physics, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany. E-mail: achtstein@tu-berlin.de
cICFO-Institut de Ciencies Fotoniques, 08860 Castelldefels, Barcelona, Spain
dCEA Saclay, 91191 Gif-sur-Yvette, France
eResearch Institute for Physical Chemical Problems of Belarusian State University, 220006 Minsk, Belarus
fDepartment of Chemistry, Ghent University, Krijgslaan 281 - S3, 9000 Gent, Belgium
gLaboratoire de Physique de la Matiere Condensee, Departement de Physique, Faculte des Sciences de Tunis, Campus Universitaire, 1060 Tunis, Tunisia

Received 24th February 2021 , Accepted 24th February 2021

First published on 18th March 2021


Abstract

Correction for ‘Tuning trion binding energy and oscillator strength in a laterally finite 2D system: CdSe nanoplatelets as a model system for trion properties’ by Sabrine Ayari et al., Nanoscale, 2020, 12, 14448–14458, DOI: 10.1039/D0NR03170D.


The authors regret that typographic errors were present in some of the un-numbered equations in the Methods section on page 14454 of the original manuscript. The corrected paragraph should read as below. The errors do not affect the conclusions or results and discussion in the manuscript, as the modelling used the correct equations; only the display of the equations is changed.

‘Actually, the electric force lines emerging from charges within a semiconductor nanoparticle pass through the surrounding medium, having a smaller dielectric constant than the semiconductor. Therefore, in order to take the dielectric screening of Coulomb interaction properly into account, the electron–hole direct Coulomb interaction is treated here using a Rytova–Keldysh potential image file: d1nr90043a-t1.tif according to the widely accepted approach (Ref. 7,31,32,51,74–77 in the original manuscript, published here as Ref. 1–8, respectively). However to avoid the divergence of the integral of the exponential function in the Keldysh potential, we can construct an approximate expression for [V with combining circumflex]c(ρ) in terms of elementary functions

image file: d1nr90043a-t2.tif

(See ref. 8 below for details). This potential is better than using an unscreened vacuum Coulomb potential together with envelope functions in z-direction, the standard approach for quantum wells. Here, rs = εcdSeZ0/(2εenv) is the dielectric screening length, Z0 = (a0/2) × 4.5 ML is the platelet thickness and γ is the Euler constant’.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

Notes and references

  1. S. Ayari, A. Smiri, A. Hichri, S. Jaziri and T. Amand, Phys. Rev. B, 2018, 98, 205430 CrossRef CAS.
  2. A. Hichri, I. B. Amara, S. Ayari and S. Jaziri, J. Phys.: Condens. Matter, 2017, 29, 435305 CrossRef CAS PubMed.
  3. M. Richter, Phys. Rev. Mater., 2017, 1, 016001 CrossRef.
  4. J. F. Specht, R. Scott, M. C. Castro, S. Christodoulou, G. H. Bertrand, A. Prudnikau, A. Antanovich, L. Siebbeles, N. Owschimikow and I. Moreels, et al. , Nanoscale, 2019, 11, 12230–12241 RSC.
  5. A. Hichri, I. Ben Amara, S. Ayari and S. Jaziri, J. Appl. Phys., 2017, 121, 235702 CrossRef.
  6. N. S. Rytova, 2018, arXiv preprint arXiv:1806.00976.
  7. A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen and T. F. Heinz, Phys. Rev. Lett., 2014, 113, 076802 CrossRef CAS PubMed.
  8. P. Cudazzo, I. V. Tokatly and A. Rubio, Phys. Rev. B: Condens. Matter Mater. Phys., 2011, 84, 085406 CrossRef.

This journal is © The Royal Society of Chemistry 2021
Click here to see how this site uses Cookies. View our privacy policy here.