Issue 34, 2021

Body centered tetragonal nanoparticle superlattices: why and when they form?

Abstract

Body centered tetragonal (BCT) phases are structural intermediates between body centered cubic (BCC) and face centered cubic (FCC) structures. However, BCC ↔ FCC transitions may or may not involve a stable BCT intermediate. Interestingly, nanoparticle superlattices usually crystallize in BCT structures, but this phase is much less frequent for colloidal crystals of micrometer-sized particles. Two origins have been proposed for the formation of BCT NPSLs: (i) the influence of the substrate on which the nanoparticle superlattice is deposited, and (ii) non-spherical nanoparticle shapes, combined with the fact that different crystal facets have different ligand organizations. Notably, none of these two mechanisms alone is able to explain the set of available experimental observations. In this work, these two hypotheses were independently tested using a recently developed molecular theory for nanoparticle superlattices that explicitly captures the degrees of freedom associated with the ligands on the nanoparticle surface and the crystallization solvent. We show that the presence of a substrate can stabilize the BCT structure for spherical nanoparticles, but only for very specific combinations of parameters. On the other hand, a truncated-octahedron nanoparticle shape strongly stabilizes BCT structures in a wide region of the phase diagram. In the latter case, we show that the stabilization of BCT results from the geometry of the system and it does not require different crystal facets to have different ligand properties, as previously proposed. These results shed light on the mechanisms of BCT stabilization in nanoparticle superlattices and provide guidelines to control its formation.

Graphical abstract: Body centered tetragonal nanoparticle superlattices: why and when they form?

Supplementary files

Article information

Article type
Paper
Submitted
21 Nov 2020
Accepted
10 Aug 2021
First published
10 Aug 2021

Nanoscale, 2021,13, 14371-14381

Body centered tetragonal nanoparticle superlattices: why and when they form?

L. Missoni and M. Tagliazucchi, Nanoscale, 2021, 13, 14371 DOI: 10.1039/D0NR08312G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements