Deep-learning on-chip light-sheet microscopy enabling video-rate volumetric imaging of dynamic biological specimens†
Abstract
Volumetric imaging of dynamic signals in a large, moving, and light-scattering specimen is extremely challenging, owing to the requirement on high spatiotemporal resolution and difficulty in obtaining high-contrast signals. Here we report that through combining a microfluidic chip-enabled digital scanning light-sheet illumination strategy with deep-learning based image restoration, we can realize isotropic 3D imaging of a whole crawling Drosophila larva on an ordinary inverted microscope at a single-cell resolution and a high volumetric imaging rate up to 20 Hz. Enabled with high performances even unmet by current standard light-sheet fluorescence microscopes, we in toto record the neural activities during the forward and backward crawling of a 1st instar larva, and successfully correlate the calcium spiking of motor neurons with the locomotion patterns.