Issue 19, 2022

Oral administration of sea cucumber (Stichopus japonicus) protein exerts wound healing effects via the PI3K/AKT/mTOR signaling pathway

Abstract

This study aimed to investigate the effect of the oral administration of sea cucumber protein (SCP) on wound healing. SCP was isolated and purified from the body wall of Stichopus japonicus. A mouse skin incision model was operated on to evaluate the wound repair effect of SCP. The histological changes in the skin at the wound sites of BALB/c mice were observed by staining with haematoxylin and eosin (H&E) and Masson's trichrome. The enzyme-linked immunosorbent assay (ELISA) was used to analyze the expression of inflammatory cytokines in BALB/c mice. The boost cell migration ability was detected by a scratch assay after HaCaT cells were cultured with digested SCP (dSCP). Western blotting and RT-PCR assays were performed to determine the mechanism of SCP promoting wound healing. As a result, the wound healing rate in the SCP high dose group was 1.3-fold, compared to that in the blank group on day 14. Also, increased epidermal thickness and 1.79-fold collagen deposition contrasted with the blank group. Additionally, SCP could up-regulate the levels of pro-inflammatory factors (IL-1β, IL-6, TNF-α) from day 3 to 7 firstly and decreased from day 7 to 14. IL-8 expression continuously decreased while the level of anti-inflammatory factor (IL-10) increased during the healing stage. Furthermore, the cell closure area reached 67% after being treated with 50 μg mL−1 of dSCP for 48 h. Cell proliferation was associated with the dSCP-activated PI3K/AKT/mTOR pathway. Taken together, SCP can be orally used as an effective agent for wound repair.

Graphical abstract: Oral administration of sea cucumber (Stichopus japonicus) protein exerts wound healing effects via the PI3K/AKT/mTOR signaling pathway

Supplementary files

Article information

Article type
Paper
Submitted
18 May 2022
Accepted
02 Sep 2022
First published
06 Sep 2022

Food Funct., 2022,13, 9796-9809

Oral administration of sea cucumber (Stichopus japonicus) protein exerts wound healing effects via the PI3K/AKT/mTOR signaling pathway

J. Sun, S. Song and J. Yang, Food Funct., 2022, 13, 9796 DOI: 10.1039/D2FO01372J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements