Issue 11, 2021

A truly bio-based benzoxazine derived from three natural reactants obtained under environmentally friendly conditions and its polymer properties

Abstract

The majority of the published bio-based benzoxazine research has focused almost exclusively on different phenolic and amine compounds, while the aldehyde portion of the oxazine ring remains the same. These materials have been labeled as fully bio-based even though only two of the three raw materials are derived from renewable resources. In this study, we synthesize a truly bio-based benzoxazine in which all three reactants necessary to synthesize a benzoxazine are from renewable sources for the first time. The bio-originated compounds sesamol, furfurylamine, and benzaldehyde are used to synthesize a truly bio-based benzoxazine by a solventless method. Unlike almost all 1,3-benzoxazine resins reported in the literature thus far, the current paper reports oxazine ring-substituted benzoxazines, further providing a great opportunity for the molecular design flexibility of benzoxazine resins over the already very rich variation of 1,3-benzoxazine compounds. The structure of the 7-(furan-2-ylmethyl)-6,8-diphenyl-7,8-dihydro-6H-[1,3]dioxolo[4′,5′:3,4]benzo[1,2-e][1,3]oxazine monomer is characterized by Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, and 1D and 2D 1H and 13C nuclear magnetic resonance spectroscopy. The polymerization behavior of the benzoxazine monomer is studied by differential scanning calorimetry (DSC), and the thermal stability of the polybenzoxazine is evaluated by thermogravimetric analysis (TGA). The corresponding polymer has a high thermal stability with 5% and 10% weight loss temperatures of 317 and 332 °C, respectively, a char yield of 46%, and a heat release capacity of 201 J g−1 k−1. Polymers that show a high char yield, a high degradation temperature and a heat release capacity below 300 kJ g−1 are considered good anti-flammable materials.

Graphical abstract: A truly bio-based benzoxazine derived from three natural reactants obtained under environmentally friendly conditions and its polymer properties

Associated articles

Article information

Article type
Paper
Submitted
17 Mar 2021
Accepted
22 Apr 2021
First published
22 Apr 2021

Green Chem., 2021,23, 4051-4064

A truly bio-based benzoxazine derived from three natural reactants obtained under environmentally friendly conditions and its polymer properties

I. Machado, I. Hsieh, E. Rachita, M. L. Salum, D. Iguchi, N. Pogharian, A. Pellot, P. Froimowicz, V. Calado and H. Ishida, Green Chem., 2021, 23, 4051 DOI: 10.1039/D1GC00951F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements