Issue 15, 2021

Lactobacillus paracasei modulates the gut microbiota and improves inflammation in type 2 diabetic rats

Abstract

This study aimed to investigate the effects of probiotic Lactobacillus paracasei NL41 on inflammation and the gut microbiota of type 2 diabetic (T2D) rats induced by high-fat diet (HFD) and low-dose streptozotocin (STZ). A T2D rat model was established by inducing Sprague-Dawley rats with HFD/STZ, followed by 12-weeks L. paracasei NL41 gavage. The blood, colonic tissues, and feces samples of these rats were collected for inflammation, histology, and intestinal microbiota profiling. L. paracasei NL41 treatment induced remarkable improvement in the inflammatory status by decreasing the levels of serum lipopolysaccharides (LPS), free fatty acids (FFA), tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-8 and increasing the level of IL-10. Gut barrier function was significantly protected in NL41-treated rats. Moreover, the strain NL41 induced changes in the microbiota structure and influenced the relative abundance of the key species. Specifically, Bacteroides, Clostridia (specifically, Ruminococcus torques), and Parasutterella were significantly reduced, while some beneficial microorganisms (Bacteroidales_S24-7_group and the families Lachnospiraceae and Ruminococcaceae) were enriched by NL41. The correlational analyses indicated that L. paracasei NL41 ameliorating inflammation was closely related to the key species of the gut microbiota. The present study indicates that probiotic L. paracasei NL41 decreases LPS-induced inflammation by improving the gut microbiota and preserving intestinal integrity.

Graphical abstract: Lactobacillus paracasei modulates the gut microbiota and improves inflammation in type 2 diabetic rats

Article information

Article type
Paper
Submitted
19 Feb 2021
Accepted
02 May 2021
First published
11 May 2021

Food Funct., 2021,12, 6809-6820

Lactobacillus paracasei modulates the gut microbiota and improves inflammation in type 2 diabetic rats

Z. Zeng, X. Guo, J. Zhang, Q. Yuan and S. Chen, Food Funct., 2021, 12, 6809 DOI: 10.1039/D1FO00515D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements