Issue 13, 2020

Fast transformation of a rare-earth doped luminescent sub-microcrystal via plasmonic nanoislands

Abstract

An efficient and fast transformation scheme for the matrix crystal of rare-earth doped luminescent micro-nanomaterials is developed by using plasmonic gold/silver nanoislands. The transformation is realized through an oxidation reaction from a polycrystalline sub-microcrystal to a single crystal, accompanied by the optimization of the crystal structure and a significant increase in luminescence. The crystal transformation can be achieved in tens of milliseconds, and the rate is controlled not only by the laser illumination power and wavelength, but also by the size and nanogap of nanoislands. Particularly, single crystal transformation is also achieved even at very low temperature, which provides a new way to obtain single crystal materials in a harsh environment. Moreover, the crystal transformation efficiency of the gold plasmonic islands is very stable in air over at least three months. This plasmon driven crystal transformation rapidly provides highly crystalline nanomaterials, which breaks the dependence of high temperature, long period and high energy consumption in the traditional annealing treatment.

Graphical abstract: Fast transformation of a rare-earth doped luminescent sub-microcrystal via plasmonic nanoislands

Supplementary files

Article information

Article type
Paper
Submitted
06 Jan 2020
Accepted
13 Feb 2020
First published
14 Feb 2020

J. Mater. Chem. C, 2020,8, 4338-4342

Fast transformation of a rare-earth doped luminescent sub-microcrystal via plasmonic nanoislands

T. Kong, C. Zhang, X. Gan, F. Xiao, J. Li, Z. Fu, Z. Zhang and H. Zheng, J. Mater. Chem. C, 2020, 8, 4338 DOI: 10.1039/D0TC00060D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements