Issue 42, 2020

Collapse and cavitation during the drying of water-saturated PDMS sponges with closed porosity

Abstract

In this paper, we study the drying of water-saturated porous polydimethylsiloxane (PDMS) elastomers with closed porosity in which the evaporation of water is possible only via the diffusion across PDMS. Starting from water/PDMS emulsions, we fabricate soft macroporous samples with different pore diameter distributions and average diameters ranging from 10 to 300 μm. In these materials, the drying may lead to either a collapsed state with low porosity or the cavitation and reopening of a fraction of the pores. Using optical microscopy and porosity measurements, we showed the influence of the pore diameters and interactions on the result of drying. At pore diameters lower than 30 μm, the majority of pores remain collapsed. We attribute the permanence of the collapse of most small pores to a low probability of cavitation and to the adhesion of the pore walls. Pores with diameters larger than 100 μm reopen via cavitation of the water they contain. The behavior of pores with diameters ranging from 30 to 100 μm depends on the porosity and drying temperature. We also visualize collective cavitation upon the drying of sponges initially saturated with sodium chloride solution. In this case, the cavitation in the largest pores leads to the reopening of small pores in a neighboring zone of the sample. To our knowledge, our results present the first experimental proof of the pore-size-dependent and cooperative nature of the response of soft sponges with closed porosity to drying.

Graphical abstract: Collapse and cavitation during the drying of water-saturated PDMS sponges with closed porosity

Supplementary files

Article information

Article type
Paper
Submitted
20 May 2020
Accepted
08 Sep 2020
First published
09 Sep 2020

Soft Matter, 2020,16, 9693-9704

Collapse and cavitation during the drying of water-saturated PDMS sponges with closed porosity

P. T. A. Nguyen, M. Vandamme and A. Kovalenko, Soft Matter, 2020, 16, 9693 DOI: 10.1039/D0SM00932F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements