Issue 24, 2020

Nanodisc self-assembly is thermodynamically reversible and controllable

Abstract

Many highly ordered complex systems form by the spontaneous self-assembly of simpler subunits. An important biophysical tool that relies on self-assembly is the Nanodisc system, which finds extensive use as native-like environments for studying membrane proteins. Nanodiscs are self-assembled from detergent-solubilized mixtures of phospholipids and engineered helical proteins called membrane scaffold proteins (MSPs). Detergent removal results in the formation of nanoscale bilayers stabilized by two MSP “belts.” Despite their numerous applications in biology, and contributions from many laboratories world-wide, little is known about the self-assembly process such as when the bilayer forms or when the MSP associates with lipids. We use fluorescence and optical spectroscopy to probe self-assembly at various equilibria defined by the detergent concentration. We show that the bilayer begins forming below the critical micellar concentration of the detergent (10 mM), and the association of MSP and lipids begins at lower detergent levels, showing a dependence on the concentrations of MSP and lipids. Following the dissolution process by adding detergent to purified Nanodiscs demonstrates that the self-assembly is reversible. Our data demonstrate that Nanodisc self-assembly is experimentally accessible, and that controlling the detergent concentration allows exquisite control over the self-assembly reaction. This improved understanding of self-assembly could lead to better functional incorporation of hitherto intractable membrane target proteins.

Graphical abstract: Nanodisc self-assembly is thermodynamically reversible and controllable

Article information

Article type
Paper
Submitted
25 Feb 2020
Accepted
02 Jun 2020
First published
02 Jun 2020

Soft Matter, 2020,16, 5615-5623

Nanodisc self-assembly is thermodynamically reversible and controllable

T. Camp and S. G. Sligar, Soft Matter, 2020, 16, 5615 DOI: 10.1039/D0SM00336K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements