Issue 9, 2020

Astaxanthin attenuates oxidative stress and immune impairment in d-galactose-induced aging in rats by activating the Nrf2/Keap1 pathway and suppressing the NF-κB pathway

Abstract

As a potential antioxidant, astaxanthin (AST) exhibits anti-aging effects. However, its relationships to oxidative stress and immunity have yet to be sufficiently investigated. In this research, integrated analysis of oxidative stress and immunosenescence was performed to elucidate the efficacy and potential mechanisms of AST in D-galactose-induced aging in rats. The results showed that AST significantly decreased malonaldehyde (MDA) levels and increased antioxidase activity, in addition to demonstrating the ability to repair histopathological injuries to the liver, thereby attenuating oxidative stress. Nuclear factor erythroid 2-related factor 2 (Nrf2) expression was up-regulated by 117.95%, whereas Kelch-like ECH-associated protein-1 (Keap1) expression was simultaneously down-regulated by 51.22%. Moreover, AST significantly reduced interleukin-1β (IL-1β) and interleukin-6 (IL-6) levels, as well as expression of nuclear factor-kappa B (NF-κB) (p65) and i-kappa-B-alpha (IκBα) proteins. Findings of repair of immune organs, as well as elevated levels of interleukin-2 (IL-2), immunoglobulin M (IgM) and immunoglobulin G (IgG), suggest a novel mechanism by which AST could regulate cellular immunity and humoral immunity to attenuate immunosenescence. The anti-aging effects of AST were shown to be due in part to the Nrf2/Keap1 and NF-κB pathways, and AST treatment ameliorated oxidative stress and immune impairment overall.

Graphical abstract: Astaxanthin attenuates oxidative stress and immune impairment in d-galactose-induced aging in rats by activating the Nrf2/Keap1 pathway and suppressing the NF-κB pathway

Supplementary files

Article information

Article type
Paper
Submitted
26 Jun 2020
Accepted
12 Aug 2020
First published
14 Aug 2020

Food Funct., 2020,11, 8099-8111

Astaxanthin attenuates oxidative stress and immune impairment in D-galactose-induced aging in rats by activating the Nrf2/Keap1 pathway and suppressing the NF-κB pathway

Z. Chen, J. Xiao, H. Liu, K. Yao, X. Hou, Y. Cao and X. Liu, Food Funct., 2020, 11, 8099 DOI: 10.1039/D0FO01663B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements