Issue 4, 2020

Efficient ferronematic coupling with polymer-brush particles

Abstract

Switching of liquid crystal phases is of enormous technological importance and enables digital displays, thermometers and sensors. As an alternative to electric fields or temperature, magnetic fields are an interesting trigger, as they are on the one hand versatile to design, and on the other hand, they are compatible with a bouquet of applications. An interesting option to enable the magnetic switchability of nematic phases is by doping them with functional magnetic nanoparticles, but it remains a challenge to achieve well-compatibilized and stable ferronematic phases. Here, we report a new approach for the experimental realization of finely dispersed MNPs and nematic LC by creation of a surface-coupled mesogen-functionalized polymer brush, and the determination of their corresponding magneto-optical response. For this purpose, CoFe2O4 particles are equipped with a covalently attached polymeric shell carrying mesogenic groups and successfully dispersed in 4-pentyl-4′-cyanobiphenyl (5CB) to form a stable ferronematic phase at ambient concentration up to ∼1 vol%, as shown by DSC and Abbé refractometry. The magneto-optic response is detected in planar aligned LC cells. As compared to undoped 5CB, the hybrid system shows a significantly increased magnetic sensitivity, and the magneto-nematic surface anchoring is quantified by analysis of the magneto-nematic cross-correlation.

Graphical abstract: Efficient ferronematic coupling with polymer-brush particles

Article information

Article type
Paper
Submitted
18 Nov 2019
Accepted
13 Dec 2019
First published
13 Dec 2019

Phys. Chem. Chem. Phys., 2020,22, 2087-2097

Efficient ferronematic coupling with polymer-brush particles

K. Koch, M. Kundt, A. Eremin, H. Nadasi and A. M. Schmidt, Phys. Chem. Chem. Phys., 2020, 22, 2087 DOI: 10.1039/C9CP06245A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements