Issue 26, 2020

Evaluation of different strategies for determination of selenomethionine (SeMet) in selenized yeast by asymmetrical flow field flow fractionation coupled to inductively coupled plasma mass spectrometry (AF4-ICP-MS)

Abstract

This manuscript exemplifies the prospective use of asymmetrical flow field flow fractionation (AF4) coupled to inductively coupled plasma mass spectrometry (ICP-MS) as a simple tool for chemical speciation of selenomethionine (SeMet) in selenized yeast. Several popular sample preparation methods were evaluated for their suitability to determine selenomethionine (SeMet) in selenized yeast by AF4-ICP-MS. These included water, methanesulfonic acid (MSA), formic acid (FA) and alkaline extractions. Alkaline extraction (using sodium dodecyl sulfate buffer) provided the best recovery/determination conditions for SeMet based on analysis of NRC certified reference material (CRM) SELM-1 since it minimized hydrolysis of the protein peptide bonds optimally required for the AF4 separation. The analytical performance of three different AF4 membranes (5, 10 and 500 kDa regenerated cellulose) was also evaluated. No significant difference in the recovery of SeMet was observed when using 5 and 10 kDa RC membranes, whereas the 500 kDa membrane resulted in a significant loss. The proposed method presents appropriate instrument and intra-assay precisions of 4.4–9.2% and 3.8% RSD, respectively, a detection limit of 0.49 μg L−1 SeMet as Se and good linearity with correlation coefficients (R) between 0.996 – 0.999. This is the first report of use of AF4-ICP-MS for species specific quantitation of SeMet in selenized yeast demonstrating its efficient use as an alternative method to other traditional chromatographic techniques.

Graphical abstract: Evaluation of different strategies for determination of selenomethionine (SeMet) in selenized yeast by asymmetrical flow field flow fractionation coupled to inductively coupled plasma mass spectrometry (AF4-ICP-MS)

Supplementary files

Article information

Article type
Paper
Submitted
30 Mar 2020
Accepted
26 May 2020
First published
19 Jun 2020

Anal. Methods, 2020,12, 3351-3360

Evaluation of different strategies for determination of selenomethionine (SeMet) in selenized yeast by asymmetrical flow field flow fractionation coupled to inductively coupled plasma mass spectrometry (AF4-ICP-MS)

D. B. Alcântara, R. F. Nascimento, G. S. Lopes and P. Grinberg, Anal. Methods, 2020, 12, 3351 DOI: 10.1039/D0AY00658K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements