Issue 24, 2020

A high flexibility all-solid contact sulfide selective electrode using a graphene transducer

Abstract

In this paper, a novel high flexibility all-solid contact ion selective electrode (ASC-ISE) based on reduced graphene sheets (RGSs) as the ion-to-electron transducer was developed for rapid detection of sulfide. A graphene layer was firstly electrodeposited on a flexible silver wire by direct reduction of graphene oxide, and nanostructured Ag2S was then prepared as the selective membrane by electrodeposition. Scanning electrochemical microscopy was performed for the characterization of the morphological properties of the RGSs and Ag2S membranes. The evaluation of the analytical performances, such as the linear range, selectivity, stability, and practical application, of the proposed ASC-ISEs for the rapid detection of sulfide was performed. The results showed that, the ASC-ISEs exhibited a linear relationship between the obtained potential signal and sulfide concentration in the range of 0.50 μM to 1.0 mM, with a detection limit of 0.18 μM. Moreover, the ASC-ISEs showed good selectivity towards sulfide over other common interfering ions, and maintained a stable electrochemical response over 7 days. These results demonstrated that graphene was a promising material as the ion-to-electron transducer layer in the development of ASC-ISEs for sulfide detection, and the results of practical applications in tap water and seawater samples showed that the ASC-ISEs held significant promise in a broad range of applications.

Graphical abstract: A high flexibility all-solid contact sulfide selective electrode using a graphene transducer

Supplementary files

Article information

Article type
Paper
Submitted
28 Feb 2020
Accepted
11 May 2020
First published
14 May 2020

Anal. Methods, 2020,12, 3151-3155

A high flexibility all-solid contact sulfide selective electrode using a graphene transducer

X. Ye, P. Qi, Y. Sun, D. Zhang and Y. Zeng, Anal. Methods, 2020, 12, 3151 DOI: 10.1039/D0AY00420K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements