Issue 5, 2019

A self-roughened and biodegradable superhydrophobic coating with UV shielding, solar-induced self-healing and versatile oil–water separation ability

Abstract

Traditional superhydrophobic coatings prepared from non-degradable materials tend to do harm to the environment throughout the fabrication process as well as after being discarded. Great efforts have been devoted to exploring more environmentally friendly approaches and materials to settle this problem. Here we report an eco-friendly strategy based on aqueous systems to construct superhydrophobic coatings on various fabrics. Fabrics were first coated with polydopamine (PDA) and then modified with the stearic acid emulsion to introduce the desired surface morphology and energy. The as-prepared fabrics achieved robust superhydrophobicity with a contact angle (CA) about 162.0° and sliding angle (SA) about 7.8°. Moreover, due to the UV-absorbing and the photo-thermal conversion ability of PDA, the modified fabrics exhibited excellent UV shielding and solar-induced self-healing properties. The as-prepared fabrics also possessed high efficiency oil–water separation properties. Without the usage of harmful organic solvents and the addition of micro/nano-particles, this biodegradable superhydrophobic fabric exhibited a clear advantage of being environmentally friendly over conventional coatings. Furthermore, the facile and low-cost fabrication process makes its large-scale production easy.

Graphical abstract: A self-roughened and biodegradable superhydrophobic coating with UV shielding, solar-induced self-healing and versatile oil–water separation ability

Supplementary files

Article information

Article type
Paper
Submitted
12 Nov 2018
Accepted
19 Dec 2018
First published
19 Dec 2018

J. Mater. Chem. A, 2019,7, 2122-2128

A self-roughened and biodegradable superhydrophobic coating with UV shielding, solar-induced self-healing and versatile oil–water separation ability

X. Dong, S. Gao, J. Huang, S. Li, T. Zhu, Y. Cheng, Y. Zhao, Z. Chen and Y. Lai, J. Mater. Chem. A, 2019, 7, 2122 DOI: 10.1039/C8TA10869B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements