Issue 44, 2019

As above, so below, and also in between: mesoscale active matter in fluids

Abstract

Living matter, such as biological tissue, can be viewed as a nonequilibrium hierarchical assembly, where at each scale self-driven components come together by consuming energy in order to form increasingly complex structures. The remarkable properties of living or “active-matter” systems, as they are generally known, such as versatility, self-healing, and self-replicating, have prompted the following questions: (1) do we understand the biology and biophysics that give rise to these properties? (2) can we achieve similar functionality with synthetic active materials? In this perspective we specifically focus on why it is important to study active matter in fluids with finite inertia. Finite inertia is relevant for mesoscale organisms that swim or fly covering at least three orders of magnitude in size (≈0.5 mm–50 cm) and their collective behavior is generally unknown. As a result, we are limited both in our understanding of the biology of mesoscale swarms and processes but also in our design of self-powered machines and robots at those scales. We expect interesting collective behavior to emerge because with finite inertia, come nonlinearities and the many-body hydrodynamic interactions between the organisms/particles can become quite complex, potentially leading to phenomena, such as novel flocking states and nonequilibrium phase transitions that have not been observed before and which could have great impact in materials applications.

Graphical abstract: As above, so below, and also in between: mesoscale active matter in fluids

Article information

Article type
Perspective
Submitted
21 May 2019
Accepted
03 Sep 2019
First published
04 Sep 2019

Soft Matter, 2019,15, 8946-8950

Author version available

As above, so below, and also in between: mesoscale active matter in fluids

D. Klotsa, Soft Matter, 2019, 15, 8946 DOI: 10.1039/C9SM01019J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements