Magnetite nanoparticles program the assembly, response, and reconfiguration of structured emulsions†
Abstract
Endoskeletal droplets—non-spherical emulsion droplets that respond to external stimuli with shape change—are modified with ferromagnetic iron oxide nanoparticles to make them susceptible to magnetic fields. The resulting droplets can be manipulated using static or oscillating magnetic fields, each producing a different response. Static fields control the orientation and position of the droplets, important in driving assembly into organized structures. Oscillating fields are shown to cause magnetic hyperthermia in ferrofluid nanoparticles, leading to droplet heating and forcing droplet reconfiguration. We demonstrate the use of static and dynamic fields to affect the organization and stability of endoskeletal droplets and their assemblies, producing highly-tunable programmable colloids that adapt to changing environmental conditions.